
fD-Ai42 831 HJGH SPEED LOW-COST WAYS TO GET MESSAGES FROM A SENDER 1/2
TO A RECEIVER WHEN..U) YLYK LTD ANN ARBOR MI
BBLAKLEY 28 MAY 84 YLVI(AFOSR/SBIRI.'83-84/08i

NC SIFIED AFOSR-TR-84F92-852F83-C-1 6F/G 721NL

EEEEEEEEEEEEEIomool
EEEmhEEEmhEmhE
EEEEEEmhEEEEEE

.5.

4..

1. 13J2

Woi

16 IIM ___Io
'3

11.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

I

'.

N-FINAL
REPORT ON

"!IIUGH-SPEED LOW-C";ST WAYS TO GET MESSAGES FROM A SENDER TO A RECEIVER

WHEFN SOME CHANNELS LINKING THEM BECOME INOPERATIVE. "
II
cvcu D'TIC

SFINA L8R5PRT-O

*, , - SE.". .' , W Y [G. M E S S A G E S F A S E D R.O A. ..I.
I,:0EN SO E'HA NE S.IN IN T M B M IN PE ATV. .

TeleaI
.jTvdfo ta

84 0628 05w

'TYV. 7.tl * .r F. -rce If~cc Of Cc~ rti Rr I-

Ston A$ corace~ for

a b or, MI 431r)5 in formational Sciences
- - .C ,~.. j Boiling A?3, DC 2 033 2

T-1 F-49620-S3-C-01 60

C TV

. Bolling AFB, DC 20332 E. Errj~ T O. 0C

________________________ 61102F 3005 Al

- ~'HICGH-SPEED 70-JSrdAST GEZ~3AF .-

3 C 3:s a,33L 84 ia2

*~ e.' i i eve Enr'neering, M'1,OSR Sb513, Al~.o~c

()9~ e c rec , -a ic C oipo n' -t R-2 ia h i ir~ t ';±.. ,.r1.
See (. ir l lma:on or, evt r,,(, S

T hz ~CS p~~ 71h1-1se I irec.pc.~~ xplci t1Y thlL !rtpe .. 'r,

al -<~ ~h' :tfch~~ v~il~1nie Th±~~ al- %.r thms , Once they Liriwj.ro_
1,: 1e;.enatc ,I b~1 e *t: as Th iley wil 2.1 ake i t pos 1lt: fur *

.1 ;sred digaital. i:.for.n.ior. to a r, c-iver by coding it fnrt;)r-mo2O'
p;,r.all cha:mnels in !n'~h a waiy t~tdecoding will recov'er tevery',i 7s~-t ~~:

* * .- j~r:ch t-~r: :~-~ p~ihr oF r jvinmels f;,11I. Thiz proJ Lct dxe.~1:..
:or iiardwiarc iT:,''ririt 1~iwi !f i.-Ii -pisf1 r p~s~ by Tvxn- c,.'i~t v 'r, :r.:'

* * - . rrr wwr. r

s~ A: m n.~s 71,*;,,ite Let ,-siIi Ficl- a ;ro~~~~i~~';
- 3 ~ ' e'f . t ' e a -r , '-j ' u: . T_~t r ~ . , P o -' A r r n.

u ~ Spread Spectrum, C ap, Distributed Processin:,_ Nette-1 Ccm-i titors

cm~i1t P~ gnin, ?:v-i.niie14r, uty Tollrabil t, ,f CepnivaoiS:,a

i r: i n t Spectrum Utilization, Cost Efftectiveness, Telecommunications; Networks, L0--a' Area
,-r- :ow Computational Coplexity, Encode, Decode, R- _dundxi: v, YIlimrunr.o:RC;inrda- V,

r~l.linParallel Co-rputa ILionis, Syrtolic Processors, Minim-um Mesage Fxpan:,lon.

\A 11 . TITL6 ,cl~ Socurity Cla,;sif 11cation)

.4 ~ .- L.I.>F 1 D: FINAL REPORT ON -igh-speed low-cost ways to get nasgsfrom a sender to a
rc~iv~rwhen somre channels linking thein b--core inoperative."

. 4

0. Introduction

This is the final report on USAF contract number F49620-83-C-o0),

effective date 83 Sep 30, project number FQ 8671-8301504 3005/AL,

duration 83 Sep 30 through 84 Mar 31.

The work described in the YLYK Ltd. proposal (see Appendix A) which

led to this SBIR contract was completed on time, and within budget.

Moreover the outcome was largely definitive and was at least as good as

the target outcome of the proposal. This report is prepared to meet the

84 May 31 deadline for final report. In summary, the work was carried

out on time, on target, within budget. This report is timely.

In the interests of readability this final report is organized as

follows:

0. Introduction

1. Overview Narrative

2. Detailed Narrative

3. Summary of tasks, work, discoveries, recommendations and

* alternatives

4. Future

5. Appendices

A. The technical part of the YLYK Ltd. proposal

which led to this contract

B. Tables of GF(2tN) arithmetic -.

C. Selected tables of Vandermonde matrices

D. Tables of ENF (encode normal forms) produced by

cold precomputations

E. Examples of the encode/decode process

F.Copy of Yeh/Reed/Truong paper on systolic multipliers

for finite fields I L
G. Copy of Bloom paper on threshold schemes

H. Program for encoding procedure (including Stages 1, 2 and 4)

I. Program for decoding procedure (including Stages 1, 2, 3 and 4)

Section 3, "Summary of tasks, work, discoveries, recommendations

and alternatives" is the heart of the report. It describes how YLYK

Ltd. performed its agreed-upon Task I and Task 2. The reader may want

to skim it before going through the report as a whole.

'2

1. Overview Narrative

1.1 Red Noise

Appendix A contains a copy of the YLYK Ltd. proposal which led to

the contract on which this is the final report. In the interests of

readability we restate the idea behind the p/s/r processes, along with

some realistic instances.

A sender S and a receiver R are linked by n channels of

approximately equal capacity. All communications are digital, i.e. are

strings of bits (0 or 1). The sender and the receiver anticipate

traumas which will inactivate some of these channels. Nevertheless both

the sender and the receiver expect at least k of the n channels to

continue to function. Here, as everywhere, it is assumed that k < n.

They face the "red noise" problem. How does the sender S encode

k channels worth of information for sending along n channels to the

receiver R in such a way that R can recover all the information

cheaply and quickly as long as any k of the n channels remain

operative? The sender S must encode in ignorance of which k

channels will survive the trauma and remain operative. Examples of the

red noise problem are numerous. We sketch out a few here. We will

return to them.

i. On-chip. Certain elements on a chip may fail permanently. The

number n of channels is typically less than 100, often less than

10. Here k is usually almost as big as n, since chips with lots

of hard failures are typically discarded. Perhaps k - n - I is

especially important.

ii. Packet switching. Here the packets are the "channels".

Occasionally a packet is destroyed or irrevocably misrouted. The

number n of total packets for many practical examples would be

less than 200, often less than 20. Most packets should arrive

intact, so k would usually be near n. Perhaps k n -I is

especially important.

-- - - - .4 - - .1 . :. . &= .. ' . - ' t - '

" 3

iii. Spread spectrum. Here a "channel" might be a frequency if

the technique employed is frequency hopping. Perhaps quite a few

frequencies are jammed. The number n of total frequencies should

usually be less than 60,000 and often considerably less than 4,000.

k can vary all over the lot. In battle conditions we might have

k < n/10, e.g. only k = 70 "clean" frequencies among n = 1,000

frequencies being used. Those who feel that this is a pessimistic

estimate should consult McEliece's recent paper on jamming in

Longo's Springer-Verlag book, Secure Digital Communications.

iv. Hard wires or fibers. A control center on a weapons platform

(plane, ship, etc.) might be connected by n = 30 parallel fibers

to a propulsion unit, sensor, control surface, or weapons pod. It

might be desirable to maintain full communication even after 20

fibers were cut. Here k - 10 - n/3. In such examples n less

than 200 seems plausible. k can vary all over the lot.

v. Multiple channels between manned centers. A city might talk to

a command post via a mixture of twisted pairs, fibers, microwave

relay paths and satellite links. It would be desirable to keep up

communication if half of the n - 20 channels joining them fail.

In all the foregoing examples the number n of total channels

before failures occur would satisfy the inequality

2M0 - I < n < 65,536 - 2t16

(where we use the ALGOL arrow notation 2t16 instead of the older

exponent notation 2 16). We will adopt the inequality above once for

all as an explicit assumption

At least one "channel";

At most 65,536 "channels".

The reader is asked to bear it in mind everywhere below. Another

categorical assumption is:

Every signal is digital.

4

1.2 Bloom pool/split/restitute processes

A solution to the red noise problem is called a p/s/r process. We

will discuss only Bloom p/s/r processes and their close relatives here.

See Appendix G for the first exposition of the idea behind Bloom

threshold schemes and p/s/r processes. They make use of many of the

ideas which arise in Reed-Solomon error control codes. But we will not

explicitly pursue any resemblances to the latter structure.

The idea behind a k-out-of-n Bloom p/s/r process is to enable a

sender to use finite field arithmetic and linear algebra to smear k

channels worth of information into n channels worth of transmission to

a receiver R in such a way that all the original information can be

quickly reclaimed from the outputs of any k of the n channels, even

if n - k of them do not carry any information to the receiver (i.e.

even if n - k of the n channels are inoperative).

Bloom's approach to building a k-out-of-n p/s/r process makes use

of a field F containing at least n elements, and a k dimensional

vector space V over F. It is easy to verify that there is at least

one collection

B -{B(1), B(2), ... , B(n)} - V

of n vectors in general position in V (meaning that every k-member

subset of B is a basis of V). Sender S and receiver R agree on

one such B and refer everything to it. Given a list

I - (I(l), 1(2), ... , I(Q))I- F
k

of k pieces of information (i.e. k members of the field F) define a

linear functional

L: V + F

with the property that

L(B(J)) - I(J)

for each positive integer j < k. These k pieces of information

provide a complete unique specification of the linear map L since

° - ,a-- -. -1 .- . " , , - , - ¢ ¢ , - W , ,. t'; 't ' '', , .. -". ,,. ... '.e

W . .Z WZ Z .Z 7 OT

5

(BI), B(2), B(k)

is a basis of V. But

[B(w(1)), B(w(2)), ... , B(w(k))}

is also a basis of V for any injection (one-to-one function)

• w: 0I, 2, ..., k} - (1, 2, ..., n)

So you can reconstruct L, and therefore determine the list

I = (1(1), 1(2), ..., 1(k))

if you know the value of L at any k members

B(w(1)), B(w(2)), ..., B(w(k))

of the set V.

Now it is obvious how to encode and decode. To encode the list I,

form L and send L(B(J)) down channel j for each positive integer

j < n. To decode (i.e. to recover I from the signals received on any

k of the n channels) form L and then determine

L(B(J)) = I(j)

for each positive integer J < k. This is possible since any

B(w(1)), B(w(2)), ..., B(w(k)) make up a basis for V, and since a

linear map L with domain V is determined by its values on a basis of

V.

1.3 Making hyperfast Bloom p/s/r processes. Stages.

YLYK Ltd. set out to take this simple mathematical structure, the
abstract Bloom p/s/r process, and produce an abstract design of a p/s/r

process which would run very fast on very cheap hardware. In this Phase

I SBIR effort no attempt was made to produce or design hardware.

Rather, the purpose of the work was to produce an abstract design of a

6

system capable of operating at megabit per second rates and above. On

the basis of this abstract design the hardware design should be possible

with few or no further abstract considerations.

Roughly speaking, the problems to be overcome fall into 4 stages:

1. Cold precomputation. The cold precomputation must be done before

the p/s/r equipment is built. These precomputations will not slow

down system operation. It would be perfectly acceptable if they

took months to perform. In fact they can be completed in a minute

except in very large cases discussed below.

2. Cool precomputation. The cool precomputations take place each time

sender S and receiver R agree on the k and the n for a

session of communication using a k-out-of-n p/s/r process. The

cool precomputations will involve a minor delay, probably causing

no inconvenience. This delay will usually be less than a second in

reasonable sized cases as noted below.

3. Hot precomputation. The hot precomputation takes place after some

channels have gone down. The receiver determines which k

channels are still operating. This amounts to finding out out

which subset B(w(I)), B(w(2)), ..., B(w(k)) of B will be used.

Since the communication session is ongoing, any delay here is

undesirable. Either you lose information on the fly or you pay for

a buffer to hold undecoded material until your decode goes on

stream. Unfortunately the hot precomputations can take many

milliseconds. It is doubtful that a significant further

improvement over the scheme YLYK Ltd. has formulated is possible

here.

4. Real-time on-line encode or decode. The real-time on-line encode

or decode stage should be able to keep up with high bit rate

inputs. In an "impedance matched" situation the computer clock

should tick at least once per arriving bit. For example, consider

a 5-out-of-9 p/s/r process. Suppose that each of the 5 operative

channels carries a signal at 10 megabits per second and that the

"matched computer clocks" in the decoding system therefore push the

computer to perform 10 similar logical operations (such as XOR,

. . - .- . .* V o - - V . , o r. o .. - .. ." . . - -' x - ; :.

7

i.e. exclusive or, of 4-bit words) per microsecond. it would be

desirable to produce decoded output on all 5 decoded plaintext

channels at a rate of 10 megabits per second. It appears possible

to achieve such throughput rates, but with a certain short lag

time. For example, the 10 megabit per second decoded output might

lag the received bit stream by 2 microseconds. In other words the

decoded bit streams proceeds at the same rate as the received

encoded bit streams. But the decoded streams lag the received

encoded streams by a phase lag of 20 clock ticks, i.e. by 20 bits.

We must deal with each of these four computational stages

separately. The first, the cold precomputation stage, is completely

noncritical. Neither time nor memory is important as long as the needed

output can be produced within months and does not consist of too many

computer words. The second stage, the cool precomputation, is not very

critical. Presumably it occurs in tranquil conditions while the sender

S and the receiver R are agreeing on a k-out-of-n scheme. Days could

elapse between the choice of k and n, and the time transmission

starts. And almost always seconds will elapse. It is therefore

unlikely that the procedure described below for cool precomputation will

delay timely receipt of transmitted messages. Stage 3, the hot

precompute, is usually the most critical. If it should take a second or

more, one must decide whether to lose a lot of bits or spend money on

buffers. Stage 3, therefore, requires extremely close attention. Stage

4, the real-time on-line decode, is crucial but not troublesome. There

are ways to carry Stage 4 out at very high bit rates, given adequate

hardware. There is a "phase lag i.e. a lag of several bits between

received input signal and decoded final signal. This lag can be reduced

to a few microseconds in existing TTL logic. But reducing it to zero is

an impossibility.

1.4. Making hyperfast Bloom p/s/r processes. Extreme cases of

parameter settings.

So much for the four stages of computation. We turn now to

parameter settings. How sensitive is a k-out-of-n p/s/r process to k

and to n?

9,

S4I * *~ ~ ~ ** v-~.:. 1 -;.-"-
-. -S~ *.- ~ c~ X~ %

8

. eFirst let us dispense with the four extreme cases. These are the

"* two trivial cases k = 0 or k = n and the two easy but not completely

trivial cases k = I or k = n-1. A 0-out-of-n p/s/r process is

silly. No information sent on n channels produces no information

received. No p/s/r coding is required. The n-out-of-n case is far

from silly. It is the present state of affairs. Send a different

message on each of n channels and hope they all get through. No p!s/r

coding is required. The I-out-of-n case is also easy to deal with

without p/s/r coding. Send the same message on all channels and hope

that at least one channel remains operative.

The (n-1)-out-of-n case is more interesting. It will also be

important in some applications. Synchronize the channels. To p/s/r

encode the information let the first n-i channels transmit their

messages unaltered. But at each time t, add (modulo 2) the bits on

the first n-i channels and send this sum (it, too, will be a bit) on

the nth channel. To decode when one of the first n-l channels, say

the jth, fails you do as follows. If i C UI, 2, ..., n}\{j} the

decode transformation is the identity. The channel is carrying its

message unaltered. But if i = j, just form the sum of the bits on

channels 1, 2,..., j-1, j+1, ... , n. This will be what the jth channel

would have carried if it were still operative. Note that the cold

precomputation, cool precomputation and hot precomputation are

nonexistent. The on line computation acts on a single bit from each

channel. And, if implemented by fast hardware as indicated in Figure

1.4.1 below in the 7-out-of-8 case, the output bit rate is the same as

the input bit rate, but with a lag of 3 = log(8) bits (All logarithms

in this report are the information theorist's logarithm to base 2).

For the first time we note a point which will be addressed more

fully below. Encoding is a do-nothing operation on all plaintext

channels (i.e. the first n-l 7 channels), and all plaintext channels

remain synchronized. Encoding is a do-something operation on the

8th = nth channel. To keep all eight channels synchronized, the

receiver must do something to every channel. In the 7--out-of 8 case

this means 3 successive stages of adding 0 to what rones over every

one of the first n-I - 7 channels. A similar statement holds

*regarding the decode process.

N

m~ J " s• " ... " *"%""' 'a % . ..-. -. % .,
-

. ?.. * - . ° .
°

•

-r-,-. r . - . ' .r ri . .< -. ,\- , . . ,. , , - - : /

1 2 3 5 6 7 8

+ NOP + +

J..
+ +

S44

Figure 1.4.1.

The 7-out-of-8 p/s/r decode when channel 4 is inoperative. Assuming

the modulo 2 adders (XOR) can operate as fast as bits are received the

output bit stream will have the same speed as the input bit streams but

will lag them by 3 bit positions. NOP means no operation. + stands

for modulo 2 addition. Information flows downward.

.\ .,.

. -

5.'::
II

'.

V%'r 7

10

.44

Fiur 14.
A vain+fFgr ... Tercivrsnszrsit h eoe

* Is.

% op.4
.5..

A6.

Fiur 1..

In each of the four extreme cases described in this subsection, the

decode process could content itself with treating one bit at a time from

each of the received channels. This is independent of n. Thus a very

cheap programmable logic array (PLA) implementation of a hyperfast Bloom

(n-l)-out-of-n p/s/r process is possible for very large n. The lag

time would be about log(n).

1.5 Making hyperfast Bloom p/s/r processes. Mean parameter

settings.

Turning now from the four extreme cases to all the other cases,

which we shall call mean cases, we note that the p/s/r processes we are

dealing with always satisfy the inequalities

2 < k < n - 2 < n < 65,536

No mean p/s/r encode or decode can deal with just one bit at a time. In

fact one must deal with "words" of length at least log(n) from each

channel. Recall that all logarithms are the information theorist's

logarithm to base 2 in this report. As noted in the YLYK Ltd. proposal

to Air Force for this Phase I SBIR proposal, encode and decode will be

done using GF(2tQ) arithmetic. As noted above, we will deal only with

Q < 16. We have qlready discussed the extreme (n-l)-out-of-n case.

This extreme case can be dealt with using GF(2) arithmetic. In

dealing with mean cases we will usually make the following assumption:

Q E (4, 8, 12, 16).

Thus we will often deal just with the arithmetic of GF(16), GF(256),

and GF(65,536). The reason for this is that 4, 8 and 16 bit words are

natural objects to manipulate on standard hardware.

A case could be made for using only GF(65,536), i.e. for sticking

. to 16 bit words for standardization, since such an implementation can

"do everything". But this size seems unwieldy at present. It may be

, .better to try to get as much mileage as possible out of the GF(256)

case, i.e. to try to get by with at most 256 transmitted channels. We

will discuss some pros and cons later.
Jr.

0. .

",. ".".' - -i i o" ''. ... ,- .v " ".'" " ' " ' - '' - .v , , 'v ""

12

1.6 Making hyperfast Bloom p/s/r processes. Stage 4. Real-time

on-line encode or decode.

In the mean cases of parameter settings one thing that does not

*: change with parameter setting is the nature of the real-time on-line

encode or decode in a superfast Bloom k-out-of-n p/s/r process. It is

matrix multiplication. Encode is so like decode that we will

concentrate on the latter in this section.

To each k-element subset

B* = {B(w(1)), B(w(2)), ... , B(w(k))}

..- of

B = {B(1), B(2), ... , B(n)}

there corresponds a k by k matrix DEC[B*J such that

for B(i) = . DEC[B*](i,J)B(w(j))

for every positive integer i < k. The sum is over all positive

integers j < k. As long as a given collection

{w(1), w(2), ..., w(k))

of channels is operative this square matrix DEC[B*I is unchanging. So

the block diagram for decoding the ith channel is contained in Figure

1.6.1 below. For illustrative purposes Figure 1.6.1 describes a

7-out-of-25 Bloom p/s/r process in which the receiver knows that

channels 1, 2, 5, 7, 10, 12 and 19 are operative. Since 25 < 32 = 2t5

we can use 5-bit words, i.e. GF(32) arithmetic. So the 7 inputs to

the decoder at time t are WORDI on channel 1, WORD2 on channel 2,

WORD5 on channel 5, ... , WORD19 on channel 19. Here of course

w(1) = I

4. w(2) - 2

w(3) -5

w(7) - 19

.''.4 ". ?""?'-. . ".,. -..2'-';'-.'. ' k t; '; ?

13

I

w4.

C14

'A r

0 0

i * e0 '-

- 4
M IUo

$ 4

-4 ~ 0

U) ,) .. 4
* ~ % 000-

4) 0 be 0 ..4

U) 0) 44 4-i .1-
-. 4 u

"4 I,-.-,4 II

.ta

c 0

~ 0 0

i --
C'4.

too . .
.4V'

"cc

14

On the face of things it would appear that one would have to use 5

cycles to fill in the (variable) 5-bit multiplicand WORD w(j) into the

box which multiplies by the (fixed) 5-bit multiplier DEC[B*I(ij),

then take more than 5 additional cycles to perform the GF(32)

multiplication, then 3 more cycles to move through the adders (the add

operation is XOR). This would involve an output stream slower than the

one bit per cycle input stream. This, however, is not the case. We

will show below how to produce a one bit per cycle output stream, using

appropriate hardware. Of course the output will lag the input in

phase. In the case above the lag will be about 18 cycles.

Again we note the need to keep parallel channels synchronized.

This means that even the plaintext channels will be "encoded" (or

"decoded"). This will be done by multiplying by 1, then adding 0,

then adding another 0, and so on for the proper number of steps.

* .C 1.7 Making hyperfast Bloom p/s/r processes. Stage 3.

Hot precomputation.

Recall that we are considering the mean cases of parameter

settings. Turning now from Stage 4, real-time on-line decode, to

Stage 3, hot precomputation, we come to an important problem. You want

to shorten the hot precomputation because you must store or lose

received bits while it takes place. It turns out that the hot

precomputation should be done somewhat differently for different

parameter settings in the mean cases of parameter settings.

In Section 2.5 below we take up this matter in more detail. If k

or n-k is small, the hot precomputation proceeds quickly.

In summary, the only rub anywhere in the system occurs in the hot

precomputation. And it is worst when k is close to n/2. In many

applications, such as digital voice, where loss of one second's worth of

transmission is tolerable, the rub can be ignored. In other

' applications, its presence may necessitate enough buffer memory to store

several second's worth of received material.

v'i -~ C '

V.5

Of course there is inevitably one other place where simple common
sense dictates that expense is inevitable, not for memory to store

signals but for memory and processing capability to do computations. In

16 bit applications in which 40,000 < k (n there are a lot of received

channels and some very big (40,000 by 40,000) matrices to build. It is

important to keep in mind the admonition that most systems with more

than 256 channels are impractical. We return to this matter below.

1.8. Interfacing error control devices and cryptographic devices

with p/s/r processes

p/s/r processes work best on channels which are virtually

error-free while operative (like some optical fibers), but which can be

rendered inoperative for long periods (e.g. by breaking the fibers). If

the operative channels are also subject to intermittent errors then one

should combine ordinary error control with p/s/r processes in the manner

shown in Figure 1.8.1. First p/s/r encode, then error control encode,

then transmit, then receive, then error control decode, then p/s/r

decode. Doing an error control encode before the p/s/r encode would be

.4 silly. We will not belabor this point further.

Cryptographic encode should probably be placed before p/s/r encode

and cryptographic decode after p/s/r decode, as in Figure 1.8.2. But

this is a matter which will no doubt be determined by an appropriate

branch of DOD, and we will therefore not treat it further.

Figure 1.8.3 shows the concatenation scheme for all three

processes. All figures are to be understood as showing information

flowing downward.

s.

16

4 OUT OF 7 p/s/r ENCODER

EEECE ECE E E ECE ECE ECE

._4!

ECD ECD ECD ECD ECD ECD ECD

4 OUT OF 7 p/s/r DECODER

Figure 1.8.1

ECE = error control encode

ECD r error control decode

- 4 ** 4 : ¢ - . y w -¢ . -4 -..

17

CRE CRE CRE CR
.: E- E 1--" I

4 OUT OF 7 p/s/r ENCODER

4 OUT OF 7 p/s/r DECODER

.4.

Figure 1.8.2

CRE - cryptographic encode

CRD RD - cryptographic decode

.4

% .4.%

18

GRE ECRE LCRE GREJ

-- FE

4 OUT OF 7 p/s/r ENCODER

Fiur 18.

- _.. . -. -. -. . .. -. _ .- . o - + - - . S o+ -, . -

19

.'.-

2. Detailed Narrative

2.1. Finite field arithmetic. Octal notation for polynomials and

residue classes of polynomials.

It is no longer possible or desirable to avoid technicalities. We

first make explicit the finite field arithmetic behind the Bloom p/s/r

'5 processes. GF(2) - Z/2Z is the field with two elements. Its

.-, arithmetic (i.e. its add, +, subtract, -, multiply, *, and divide, /) is

summarized in the tables

+ 0 1 - 0 1 * o 1 0 1

0 0 1 0 0 1 0 0 0 0 undefined 0

'5 1 1 0 1 1 0 1 0 1 1 undefined I

Thus x + y - x - y for every x, y C GF(2), the only nonzero product

is 1 * 1 - 1, and division by zero is impossible (undefined). You can

put these things another way. +, -, and * are modulo 2 operations,

and you cannot divide by zero. Alternatively, + and - are XOR of

bits (exclusive or), * is AND of bits, and you cannot divide by zero.

Let p(x) be a polynomial over GF(2) which is irreducible

(unfactorable) over GF(2). Examples of polynomials over GF(2) which

are irreducible over GF(2) are:

x

x+I

x+2 + x + 1

xt3 + x + 1

xt4 + x + 1

xt5 + xt2 + I

xt6 + x + I

xt7 + xt3 + 1

xt8 + xt4 + xt3 + xt2 + 1

x12 + xt6 + xt4 + x + 1

xt16 + xtl2 + xt3 + x + 1

4.,.:

<.+

20
f4

.5'.

Examples of polynomials over GF(2) which are reducible over GF(2)

(i.e. polynomials which can be factored) are:

xt2 = x * x

xt2 + x = x * (x+)

xt2 + I = (x + 1) * (x + 1)

xt4 + xt2 + I = (xt2 + x + 1) * (xt2 + x + 1)

xt4 + xt2 + x + I = (x + 1) * (xt3 + xt2 + 1)

Let n be a positive integer. The field GF(2tn) is defined as

follows. Let p(x) be an nth degree (monic) polynomial over GF(2)

which is irreducible over GF(2). Let (p(x)) be the principal ideal

generated by p(x) in the ring POL of polynomials over GF(2). Then

GF(2tn) is the quotient

GF(2tn) = POL/(p(x)).

of the ring POL modulo the principal ideal generated by p(x). For

example if p(x) = xt3 + x + I then the version of GF(8) = GF(2t3)

gotten by setting

GF(8) - POL/(p(x)) - POL/(xt3 + x + 1)

consists of 8 residue classes modulo p(x) = xt3 + x + 1, namely

0 - <0,0,0> = CLASS (0) - (0, xt3 + x + 1, ... }

1 - <0,0,1> - CLASS (1) - (1, xt3 + x,

2 - <0,1,0> = CLASS (x) - {x, x+3 + 1, ... }

3 - <0,1,1> = CLASS (x+l) - {x+l, xl3, ... }

4 - <1,0,0> - CLASS (xt2) - (xt2, xt3 + x+2 + x + 1, ... }

5 = (I,0,I> = CLASS (xt2 + 1) - {xt2 + 1, xt3 + x, ...)

6 = <1,1,0> = CLASS (xt2 + x) - {xt2 + x, xt3 + xt2 + 1, ...)

7 - <1,1,1> - CLASS (xt2 + x + 1) - [xt2 + x + 1, xt3, ... 1

It is too tedious to use a notation such as

o :-: -*:.p* *

21

*.' CLASS (x2 + x)
,,'..,

or
"':' <1,0,1>

or
"xt2 + x, xt3 + xt2 + 1, x4, ... }

for a member of GF(8). Therefore we adopt the octal notation used in

the MIT Press book of Peterson and Weldon on error correcting codes. An

arabic numeral with neither overbar nor underbar is a whole number.

Thus

7 = VII = seven,

the number of days in the week. An arabic numeral with an overbar Is a

polynomial over GF(2). Thus

7 = <1,1,1> = xl2 + x + 1.
V

And an arabic numeral with an underbar is a residue class (modulo some

agreed upon irreducible polynomial p(x)) to which a polynomial q(x)

belongs. Thus if p(x) - xt3 + x + I is agreed upon in advance then

7 - {xt2 + x + 1, x3 + x2, xt4 + 1, xf5 + x3 + x + 1, ... J

= C7, T4, T , ... }

= CLASS (T) mod (T')

is the residue class modulo xt3 + x + I whose lowest degree member is

7 =x+2 + x + 1.

We now agree on polynomials over GF(2) of degrees 2, 3, 4, 5, 6,

7, 8, 12 and 16. Each of them is irreducible over GF(2). In fact,

each of them is a primitive irreducible polynomial over GF(2). There

is no need to describe the notion of primitive here. Suffice it to say

that it is a convenience, and is explained in Peterson and Weldon.

There are nine standard polynomials to be understood everywhere

below. They are the polynomials on which our version of GF(4)• GF(8),

GF(16), GF(32), GF(64), GF(128), GF(256), GF(4,096) and GF(65,536) are

V based. It is, of course, well known that there is (up to isomorphism)

only one Galois field of any given size.

40' The nine standard polynomials are

4.4 ,0 ' ' - 'o:' ',.-''... ' "" "" " . . "

*
I
o - . .

7 = xt2 + x + I

TT = xt3 + x + 1

TT = xi4 + x +
4 a4

45 = xt5 + xt2 + 1

103 = x6 + x + I

* 211 = xt7 + xt3 + 1

435 = xt8 + xt4 + xt3 + xt2 + I

10123 = xt12 + xt6 + xt4 + x + 1

210013 = xtl6 + xt12 + xt3 + x + I

Members of GF(2t4) GF(16) can thus be represented as 4-bit words,

i.e. "numbers" expressible by two (underbarred) octal arabic numerals,

neither of which is 8 or 9. Members of GF(2t8) = GF(256) "are" 8

bit words, i.e. "numbers" expressible by three (underbarred) octal

arabic numerals (8 and 9 will not be used). For GF(2t12) = GF(4,096)

we use 12 bit words, i.e. foursomes of underbarred arabic octal numerals".'

(no 8 or 9 allowed). For GF(2t16) = GF(65,536) we use 16 bit words,

underbarred 6 "digit" arabic numerals (with no occurrence of 8 or 9).

To exemplify ,the arithmetic of GF(2tn) we will give tables for:

GF(4) as POL/(xt2 + x + 1) = POL/(7)

GF(8) as POL/(xt3 + x + 1) = POL/(13)

GF(16) as POL/(x+4 + x + 1) - POL/(23T)

They are contained in Appendix B.

2.2 The linear algebra of Bloom p/s/r processes.

As noted above, the extreme parameter setting cases

%-.

'.,

: '* '/- - : .** * a :. *. . - . . a. .. K ... ".-.'* -.....--.. ... *;':':,...

*e .Y-1 7

23

*(k,n) = (O,n)

(k,n) = (1,n)A

(k,n) = (n,n)

require no coding. The extreme parameter setting case

(k,n) = (n-l,n)

can be very simply coded and decoded using only GF(2), and without

cold, cool or hot precomputation. Thus we will consider the mean

parameter setting cases, i.e. the cases involving (k,n) such that

2 < k < n-2 < n < 2tb =Q < 65,536

Here b is a parameter describing the size of (i.e. number of bits in)

the computer word to be used in practical implementations. Its place in

the scheme of things will be obvious below.

Let us bugin with the 2tb by 2tb (i.e. Q by Q) Vandermonde

matrix with entries in GF(2tb) = GF(Q). This square matrix VAN is

of the form

1 0 0 0 . .. 0 0

:11 2 1t 1t ...- 2 1 b1)

1 2 2t2 2t 2 . . . 2+(b-2) 2t2(b-1)

VAN=

1 2t(b-3) 2t2(b-3) 2t(b-3) . . . 2t(b-3)(b-2) 2t(b-3)(b-1)

I 2t(b-2) 2t(b-2) 2t30b-2) . . . 2t(b-2)(b-2) 2+(b-2)(b-1)

Note that the bases are (underbarred) members of GF(Q) and the

* - exponents are (unbarred) integers. It is a fact that 2 is a primitive

element in GF(2tb) if GF(2tb) is realized as POL/(p(x)) where

-7,7-1. 1- -Vi - 77- , ,

24

4

p(x) is a primitive polynomial. We will always use fields of this

form. Examples of Vandermonde matrices are

1 0 0 0

1 1 1 1

VAN =

I 2 3 1

1 3 2 1

in GF(4) POL/(xt2 + x + 1) = POL/(7), and

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 2 4 3 6 7 5 1

1 4 6 5 2 3 7 1
VAN =

1 3 5 4 7 2 6 1

1 6 2 7 4 5 3 1

1 7 3 2 5 6 4 1

1 5 7 6 3 4 2 1

in GF(8) POL/(xt3 + x + 1) = POL/(13). See Appendix C for examples of

Vandermonde matrices, for various fields.

Now let LEF[k] be a special Q by k submatrix of VAN. It

consists of the first k columns of VAN. In our GF(8) example

4ovk!

A]

*25

1 0 0

1"1

1 2 4

1 4 6
LEF[31

1 3 5

1 6 2

1 7 3

1 5 7

It is a well known property of Vandermonde matrices that every k

by k submatrix of LEF[k] is nonsingular whenever k satisfies the

," inequalities

2 < k < Q = 2tb

Thus the rows of LEF[k] can be regarded as a collection of 2tb = Q

vectors in general position in a k dimensional vector space V over

GF(2tb) = GF(Q). But recall that 2 < k < n-2 < n < Q. This means that

we have the wherewithal to build a Bloom k-out-of-n p/s/r process.

Consider any list' w(1), w(2), ..., w(k) of distinct row indices of

LEF[k], i.e. any injection

w: ft, 2, ... , k) I 2, . . }

There is obviously a Q by k (coding) matrix COD corresponding tow

this w such that

ROW[i] =). COD (i,J)ROW[w(j)]
w

for every positive integer i < Q. In particular

ROW[i] =)i CODe(i,J)ROW[e(j)]

COD e(i,J)ROW[j]

when e is the identity injection. All three sums above are over

positive integer j < k.

%'%, ," , ., : ' " ' ',"" ,"., "... . '.'.' ',' ' ."....,." .:",:..,.__ . .___ . ,_ _ ,_ ,_,.' ',.V ,.. . ,. ,", .".. -

26

The Bloom k-out-of-n p/s/r process now works as follows. Let

1(1), 1(2), ..., l(k) be the b-bit plaintext words the sender S has

on source channels 1, 2, ... , k at time t. The sender encodes them

to form b-bit words H(1), H(2), ..., H(n) for sending along broadcast

channels 1, 2, ..., n as follows

H(i) = COD (ij)I(j)e

for positive integer i < n, where the sum is over positive integer

j < k. When the receiver R ascertains that channels

w(1), w(2), ... , w(k) are operative, he decodes by finding

I(i) =) COD w(i,j)H(w(j))

for positive integer i < k, where the sum is over positive integer

j < k.

Before looking at implementation in the four stages we make a few

comments. First, encoding is a process which depends only on k and

Q, not on n (except in the trivial sense that you don't bother to

encode any messages H(i) for channels n+1, n+2, ..., Q) and not on

which channels are operative and which are inoperative. After all, the

sender is not likely to know which channels are operative.
Mathematically speaking, encoding makes use only of the (fixed) identity

Injection e.

Decoding, on the other hand, makes use of the (variable) injection

w which embodies information known only to the receiver, namely which

channels w(I), w(2), ..., w(k) are operative. So decoding depends on

k, w and Q. Consequently decoding depends implicitly on n, since

1 < w(i) < n for every positive integer i < k.

If either sender S or receiver R can profit by taking n into

account in a a more explicit fashion in their calculations, they are

free to do so. But they don't have to. We will show below how to take

advantage of a knowledge of ,1.

Comparing this description with the YLYK Ltd. proposal, the reader

will note our assumption that

n < 2tb Q

.-.",.-,." ., ,. . ,-"--, -,- . • .. - .- ,,-%-
.

,.
*,-

,*
.-

.S*.-
.• -

- -. . .. , •

27

That proposal held forth the possibility of the inequality

n < Q+ 2

in many cases.

We abandoned this tack, fine tuning the field size, for four

reasons:

I. It shortens word size by only one or two bits where it is possible;

2. It complicates coding and decoding where it is possible;

3. It is a very difficult problem to determine all the cases in which

it is possible. See the MacWilliams and Sloane book on error

correcting codes for more on this;

P, 4. We now know how to achieve the desired goal of attaining hyperfast
eBloom p/s/r processes without fine tuning the field size. The

hyperfast real-time on-line decode is attained in a different way,

by use of systolic multipliers, as we shall see below. Moreover,

fine tuning field size is of no appreciable utility in attacking

the other crucial problem, shortening the duration of Stage 3, the

hot precomputation.

2.3. The first stage of computation in the mean cases of the Bloom

p/s/r process, the manufacturer's cold precomputation

Recall that we have a field

d tGF(2tb) = GF(Q)

. _ and that

2 < k < n-2 < n < 2+b - Q.

The entire problem of encoding and decoding in a k-out-of-n Bloom

p/s/r process amounts to this. For each injection

w: {, 2, ..., k1 + {0, 2, ... , n}

(including the identity injection w - e) find the k by k matrix
COD such that

, ,.'

28

ROW[i] = COD w(i,j)ROW[w(j)]

where the sum is over positive integer j < k, and where ROW[ij is

the ith row of the Q by k matrix LEF[k]. Recall that LEF[k]

consists of the first k columns of the Q by Q Vandermonde matrix

VAN over GF(Q). Once COD is found, form
e

H(i) = L COD (ij)[(j)

(where the sum is over every positive integer j < k) for every

positive integer i < n to encode. Once w is chosen and COD ism w
found, form

I(i) =) CODw(ij)H(w(j))

(where the sum is over every positive integer j (k) for every

positive integer i < k to decode.

Obviously it is desirable to carry out computations as early as

possible. We have agree to send the k plaintext messages

1(1), 1(2), ..., 1(k) (i.e. members of GF(2fb) GF(Q), i.e. b-bit

words) down channels 1, 2, ..., k respectively. These words are

unaltered. They are transmitted as is.

H(1) - '(1)

H(2) - 1(2)

H(k) , I(k)

What we need is the encoding for channels k+I, k+2, ... , n. In other

words we need to express rows k+l, k+2, ..., k+n of LEF[k] in terms

of rows 1, 2, ..., k. To"say we need dependences is to say we need

vanishing linear combinations of the rows of LEF[k]. We need,

therefore, a basis for the left kernel of LEF[k] (The left kernel of a

Q by k matrix L is the set of all length Q row vectors r such

that rQ is the length k row vector with all zero entries). Let us

take GF(8) as an example.

29

1 0 0 0 0 0 0 0

I 1 I 1 1 1 1 1 .

1 2 4 3 6 7 5 1

1 4 6 5 2 3 7 1
L E F (8 1 V A N - - -

1 3 5 4 7 2 6 1

1 6 2 7 4 5 3 1

1 7 3 2 5 6 4 1

1 5 7 6 3 4 2 1

is nonsingular.

1 2 4 3 6 7 5

LEF[71 6 5 2 3 7

1 3 5 4 7 2 6

1 6 2 7 4 5 3

1 7 3 2 5 6 4

1 5 7 6 3 4 2

has rank 7. Therefore its kernel has dimension 1 and a calculation

shows that it is spanned by the row vector

1 0 0 0 0 0

1 2 4 3 6 7

S1 4 6 5 2 3LEF[6] =_-. ..

1. 3 5 4 7 2

1 6 2 7 4 5

1 7 3 2 5 6

1 5 7 6 3 4

JlL.

.: ,,.,; :',; 2 , €;,'¢ "-.".. " >" ."'..." ..'.. .*.'.. ".-. -. "."" . .'v,",".',- '. . .,.,,.,.',,-,- ,,

v.. 30

has rank six. So its kernel contains the kernel of LEF[71. A

calculation shows that it is spanned by the row vectors

and

7 76253 o4 1 0 1

Similarly, one easily verifies that

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

7 6 2 5 3 4 1 0 1 1 1 1 1 " 0 0 0 0 0

2 3 2 1 3 1 0 0 1 2 4 3 6 0 0 0 0 0

1 4 6 5 2

1 3 5 4 741 6 2 7 4

1 7 3 2 .5

. 1 5 7 6 3

:,Going on in this .way we arrive at the encode normal form ENF matrix

over GF(8):

7-'.z 2 6 5 3 4 1 0 1

2 3 2 1 3 ! 0 o

3 5 2_ 5 0 0 0

°4 3 6 1 0 0_ 0 0

,, 3 2' 1 0 0 0 0 0 .

- - "--

x.14652

_ .; ;; ?} q P,/ ' ¢f i~¢ % : _ ", ,""€ ' .,,""' "" " ,-• -"-'_ -"" ' " " "" -"16 2 7 4:"'' ' ,.''". 5"" ,- ,,-

31

This matrix ENF is a Q-2 by Q matrix with I in the (j, Q-j+I)th

entry and with 0 entries everywhere below these "antidiagonal" 1 s.

In fact the matrix product ENF * VAN is a Q-2 by Q matrix with zeros

above the "antidiagonal". Given any Q by Q Vandermonde matrix for

GF(Q) it is elementary linear algebra to find the Q-2 by Q matrix

ENF such that:

1. For each positive integer J < Q-2 the top j rows of ENF form

a basis for the left kernel of LEF[Q-jj

2. The antidiagonal entries (i.e. ENF(j, Q-J+I) for every positive

integer j (Q-2) are 1

- 3. The entries below the antidiagonal are 0.

This is the substance of the manufacturer's cold precomputation,

Stage 1. A computer program incorporating this precomputation is

contained in Appendix H. It could take months on an IBM 370 and still

be perfectly satisfactory, since it will be done just once before the

devices are fabricated. In fact the GF(16) computation takes seconds

on an IBM PC. The GF(16) ENF is a 14 by 16 matrix whose entries are

4-bit words. See Appendix D for examples of ENF matrices for various

fields.

The GF(256) cold precomputation, even without the shortcuts

employed in Appendix H, takes far fewer than a billion machine cycles,

i.e. a few minutes of mainframe time. To store its output requires

254*256 - 65,024 bytes of ROM. The GF(4,096) and GF(65,536) cold

precomputations take longer.

Since finding a kernel basis and triangularizing its matrix takes a

small constant times the cube of the dimension of the vector space,

finding a 4094 by 4096 ENF matrix for GF(4,096 - GF(2tl2) could

take as many 1013 single precision integer operations and single word

logical operations on an IBM 370. This could take months. To store the

output you would need more than 200 megabits of ROM.

12-"
%'

-

- To find a 65,534 by 65,536 ENF matrix over GF(65,536) = GF(2[6)

- is a bigger task. Here we are talking about a fair sized multiple of

2t48 operations, say lOl7 to be on the safe side. Of course, this

assumes no parallelism in the computer. But parallelism and vector

structure are keynotes of the computation. However it looks like months

of calculation on better adapted machines such as a CRAY I or the new

MPP being put up at NASA, both of them well-suited to the sort of linear

algebra computations required. It also means scrapping the PASCAL

program in Appendix A and writing code which exploits the peculiarities

of the machine it runs on. Also, storing its output is nontrivial.

This output consists of 65,534 * 65,536 = 4,294,836,224 16-bit words.

This means almost 9 gigabytes of ROM in the devices which implement such

v p/sir processes.
What about larger fields? It seems doubtful that they can be

exploited economically in the 1980s, or that they would be used even if

computations were cheap. Some objections are:

,4 i. 65,537 channels is a lot of channels. Is there a plausible

application of k out of n p/s/r processes in a situation

where n > 2t16 = 65,536?

ii. Fields larger than GF(2t16) cannot be handled on a 16 bit

microprocessor without adopting unnatural expedients which slow

things down.

itt. Stage 1, the cold precomputation stage in which ENF is formed,

gets expensive and time consuming in GF(2tb) for b > 16.

For example production of an ENF for GF(2t20) looks like a

multiple of 2t60 operations on a Von Neumann machine, say

10t20 operations.

iv. Storing the ENF in fields bigger than GF(65,536) requires

more than 9 gigabytes of ROM.

L
*

V.

33

Summarizing the first stage, the manufacturer's cold precomputation

stage, we see that the 2tb - 2 by 2tb encode normal form matrix ENF

has the following properties (pessimistic estimates):

Galois time to space to
field produce ENF store ENF

GF(16) = GF(2t4) PC minutes I k bits

GF(256) = GF(2t8) mainframe 600 k bits
minutes

GF(4,096) = GF(2t12) mainframe 300 m bits
months

GF(65,536) = GF(2tl6) supercomputer 70 g bits
years

2.4 The second stage of computation in the mean cases of the Bloom

p/s/r process, the sender's cool precomputation.

Recall that we have, once for all, chosen

GF(2tb) = GF(Q)

Thus the sender S must take k b-bit words at time t and encode

this information into n b-bit words for transmission. Moreover

2 < k < n-2 < n < 2tb Q

....

-II

* - - -* - S -- - - - * - 4 S * *V-W

34

The ENF matrix is available to both sender and receiver. It contains

information about VAN or, more specifically, about

LEFI2J, LEF[3J, ..., LEF[Q-11. The first row of ENF expresses the Qth

row of LEF[Q-1I (and therefore of LEF[Q-21, ..., LEF[2]) as a linear

combination of its first Q-1 rows. The second row of ENF expresses

the (Q-l)st row of LEF[Q-2] (and therefore of LEFIQ-31, ..., LEF12])

as a linear combination of its first Q-2 rows. And so on, to the

bottom row (the (Q-2)nd row) of ENF. This row of ENF expresses the

third row of LEF[2] in terms of the first two rows of LEF[2].

Once k and n are agreed upon, the sender S and receiver R

fix their attention on LEF[k]. They can ignore its bottom Q - n

rows. Thus they are looking at the upper left n by k submatrix

I' UPLEFIn,k] of VAN. Clearly, the dependences they both need to know

among the rows of LEF[k] (or, equivalently, of UPLEF[n,k]) are all

contained (implicitly at least) in rows Q - n + 1, Q - n + 2, ... ,

* Q- k of ENF.

For example a 3-out-of-7 p/s/r over GF(8) is based on knowing

the dependences among the first seven rows of

1 0 0

1 2 4

1 4 6
LEF[3] 1

1 3 5

1 6 2

1 7 3

1 5 7

and these are all expressed'in rows

8 -7 + 1 2

8 3-

.4 8-7+2=3

8-3=5

*35

of ENF, i.e. in the matrix

7 2 6 5 3 4 1 0

2 3 2 1 3 1 0 0
MID[2,51 =

3 5 2 5 1 0 0 0

4 3 6 1 0 0 0 0

Let MID[Q-n+l, Q-kI be the n -k by Q submatrix of ENF consisting

of rows Q-n+l, Q-n+2, ..., Q-k of ENF. We now have the only matrix of

interest to the sender S and the receiver R during this

communication session using this k-out-of-n p/s/r. The last Q - n

columns of MID[Q-n+1, Q-kI are, of course, zero. So they can, and

will, be ignored in implementations. But a theoretical discussion

proceeds more smoothly if we speak of all of MID[Q-n+1, Q-k]. The

sender S sends channels 1, 2, ..., k in the clear (i.e. uncoded).

But he needs to know how to encode channels k+l, k+2, ..., n. To do

this the sender S can use elementary row operations to go from the

already "triangularized" MIDIQ-n+1, Q-kj to a "diagonalized" form SEN

in which column k+l has all zeros except for a 1 in the bottom row.

Column k+2 has all zeros except for a 1 in the row above the bottom

row, and column n has all zeros except for a 1 in the top row. This

is a trivial variant of the process of reducing to Hermite normal form.

Once he has produced the matrix SEN - SEN[k,n,Q], the sender S has

finished his cool precomputation and he can start to encode and send.

His encode amounts to

H(j) = i SEN(J,g)I(g) = SEN[k,n,Q](J,g)l(g)

for each j e (k+l, k+2, ..., n}, where the sum is over positive

integers g < k.

The cool precomputation is linear algebraic, like the cold

precomputation, but it is shorter. For a k-out-of-n p/s/r process it

involves bringing an already triangularized matrix with n-k rows to

;I diagonalized form. This involves about (n-k)(n-k+l)/2 row

operations. Therefore, approximately n(n-k)(n-k+l) arithmetical

operations are involved, i.e. subtractions/additions (XORs) and Galois

ao.

36

field multiplication. It is only necessary to find n-k Galois field

reciprocals if you do things carefully. This is helpful, since Galois

field divisions require the Euclidean algorithm and are much slower than

Galois field multiplications (unless we merely store arithmetical

tables, an attractive expedient if Q < 256).

Consider a device built with Q synchronized parallel processors

and a stored multiplication table they can all draw the same product

from simultaneously. On such a device it would take about c(n-k)t2

machine cycles for the computation, where c is around 10. Thus for

GF(16) = GF(Q) (i.e. 2 < k < n-2 < n < 16) we need 16 4-bit

processors, a 16 by 16 table of 4-bit words (1 k bit ROM) and around

10 * 14t2 = 1960 machine cycles for parallel implementation on 16

processors. It would take about 50,000 cycles for implementation by one

processor. This means a delay of several milliseconds before the sender

S can send. For GF(256) we need 256 8-bit processors, a 256 by 256

table of 8-bit words (512 k bit ROM) and a delay of the order 10 *

254t2 = 645,160 machine cycles (i.e. about a second) before sending

could start. With only one processor this delay could rise to 256 *

645,160 which is approximately 200 million machine cycles. So it could

take many seconds before transmission began. Of course the sender could

send plaintext over the first k channels while waiting for the coding

process for the last n - k channels to be found.

If some important (k,n) pairs were incorporated into firmware

the sender's cool precomputation could be made part of the

manufacturer's cold precomputation.

Turning to GF(65,536) a parallel implementation would need 65,536

16-bit processors, and 16 * 65,536t2 bits of ROM (i.e. 70 gigabits)

The delay before sending could be as much as 40 billion machine cycles,

an hour or so. Using just one 16-bit processor and doing the

multiplications on the fly to dispense with the need for ROM could raise

the delay before sending to. years.

So, yet again, we see indications that 65,000 channels is a lot of

channels to spread your messages among. But 256 channels once again
looks very promising.

4''':'" "'"".""."'.,., _ ,__, "".'""... - iL i'i> - .. : ,- iii i , i ' ,,,, ,: i / '. ,

37

Let us summarize the second stage, the sender's cool precomputation

stage. tie extracts (from ENF) and row reduces (to a sort of Hermite

normal form) the matrix MII)[Q-n+1, Q-k] to produce an n - k by n

mnatrix SEN~k,n,QI. This matrix describes how to form "he encoded words

sent along channels k+1, k+2, ... , n at time t in terms of the

- plaintext" words sent along channels 1, 2, ... , k at time t.

The work and memory required have upper bounds (since n < Q).
N These upper bounds are shown in the table below:

Time to Number and size Storage
Field precompute of processors required

by parallel for parallel for
implementation implementation SEN(k,n,Q)

GF(t4 = F(6)milliseconds 164btI k bit

GF(2t8) = GF(256) seconds 256 8-bit 600 k bit

GF(2tl2) =GF(4,09.6) minutes 4,096 16-bit 300 m bit

GF(2tl6) = GF(65,536) hours 65,536 16-bit 70 g bit

A computer program incorporating the cool precomputation is

containied in Appendix It.

6%

1 - I

38

2.5 The third stage of computation in the mean cases of the Bloom

p/s/r process, the hot precomputation.

The receiver R is moving right along, receiving all k plaintext

channels from the sender S for a while, and then some channels fail.

Using means which lie outside the scope of this Phase I SBIR effort, the

receiver finds at least k channels which are still operativv among the

n channels the sender is using. He makes a choice of exactly k of

these operative channels any way he chooses, perhaps by picking the

first k of them but almost certainly in a predesigned automated

manner. Such a choice amounts to an injection

w: {1, 2, ki (1, 2, ... , n).

Like the sender S, the receiver R has already singled out the matrix

M[Q-n+1, Q-k]. In practice he has trimmed off all the zero columns on

its right side.

On the face of things the receiver would have to use the

information contained on the injection w to set up a way of using

elementary row operations to do a reduction of MID[Q-n+l, Q-kJ to a
variant of Hermite normal form before real-time on-line decode could

proceed.

This would appear to take as many as a small multiple of ni3

operations in the small k case (since the relevant matrix is

n-k by n). But there are artifices to reduce the computation time

uniformly to yield a bound which is more like a small multiple of

P(n,k) = n * (n-k) * minik, n-k}

operations. Clearly P(n,k) < (n+3)/4 < (Q3)/4, (the worst case being

k = n/2).

Moreover P(n,k) is rather small (is less than knt2) if k is

small, and is smaller still. (is less than n(n-k)t2) if n-k is small

(i.e. if k is large).

The routines which achieve this improvement over straightforward

linear algebraic row reductions are based on a trivial lemma, which is

nevertheless worth stating.

39

Lemma: Let

DATA = {i, 2, ... , n-k} I1 RANGE(w)

DESIDERATA = UI, 2 ... , k}\ RANGE(w)

DELENDA = in-k+l, n-k+2, ... , n}\RANGE (w).

Then the sets DATA and DELENDA contain the same number of members.

Moreover the set DATA is disjoint from both DESIDERATA and DELENDA.

. Proof: Let A be the number of members of RANGE(w) which are no

larger than n-k. In other words the set DATA contains A members. It

follows that there are k - A members of RANGE(w) which exceed

n - k. Hence the number of members of

"n-k+l, n-k+2, ... , n} \RANGE(w)

is equal to

[n -(n-k)] [k -Al] A.

Obviously DATA RANGE(w). On the other hand DESIDERATA DELENDA

contains no member of RANGE(w). This ends the proof.

A computer program incorporating the hot precomputation is

contained in Appendix I. The idea behind Stage 3, the receiver's cool

precomputation in this program is to exploit the Lemma. It enables the

receiver to avoid carrying out a complete row reduction of

MID[Q-n+1, Q-k] to Hermite normal form. The DATA/DESIDERATA/DELENDA

breakup of the set of column indices U1, 2, ..., n} has a partial

reflection in the row indices of MID[Q-n+1, Q-k]. The result is that

.. many rows are irrelevant to the production of the decode matrix COD

described here. Moreover it is often possible to use this breakup to

partition the rows of MID[Q-n+l, Q-k] into three sets, one of which

can be ignored, and the second of which can be used to act on the

4. third. A careful reading of the program will also explain the bound

P(n,k) = n * (n-k) * min{k, n-k)

%on the number of operations, a much smaller bound than the bound nt3

which unimaginative use of standard linear algebraic techniques would

suggest.

..

_.°%'

" *0" . - , " . % ".. . . , "- , -- . -- e ", , , ""7 "- ,.".".'- ... , ""-'; - - . """-'"" ", ,", , . °

p..-" 40

2.6 The fourth stage of computation in the mean cases of the Bloom

p/s/r processes, the real-time on-line encode or decode

After finishing the third computational stage, the receiver's hot

precomputation, the receiver R is ready to decode. He has a matrix

REC whose rows are indexed by the set DESIDERATA, and which has n

columns. Thus REC is no larger than a k by n matrix. Let

jcDESIDERATA. Then REC(j,j) = 1. Moreover RECQj,k) = 0 for every

S.k C DELENDA. Recall that + coincides with - in our Galois field

*GF(2tb) = GF(Q)). It should be evident that the receiver can reclaim

the word 1(j) which has been sent along channel j at time t from

.- the words H(w(g)) (where 1 < g < k) according to the formula

". ., (J) = REC(j,w(g))H(w(g))

for every positive integer j belonging to the set DESIDERATA. The ui .

above is over positive integer g (k.

Similarly the sender has utsed his cool precalculation to produce a

matrix SEN such that

N.,- H(j) =). SEN(j,g)I(g)
-.

for every integer j C {k+l, k+2, ..., n). The sum is over positive

integer g < k.

The problem of the sender in encoding, and of the receiver in

.. . decoding, is to calculate quickly. This will be done as shown in Figure

1.6.1 above. So what remains is to multiply fast. And we can take

advantage of the fact that in each of the top boxes in Figure 1.6.1 the

multiplier remains fixed, though the multiplicands change with time. To

carry out a multiply as fast as bits can be fed in is the goal. This

can be done with systolic multipliers as shown in Appendix F.

'-rW

-N,

41

* To carry out a single GF(16) multiplication at maximum speed

requires about 300 cells. To carry out 16 multiplications

simultaneously requires about 4100 cells. The cells themselves

consist of fewer than 10 active elements. So a very pessimistic

estimate of the hardware required to carry out a GF(16) based p/s/r
process is 100,000 active elements. This might require one or two

programmable logic arrays.

The implementation of a GF(256) based p/s/r process would be

larger. But, taking account of the fact that constant multipliers

eliminate the need for flipflops in the basic cells in the

implementation, we find that even GF(256) based p/s/r processes can be

implemented using at most 256 PLAs. The chips for a p/s/r process

involving at most 16 channels will cost less than $100 today. For a

p/s/r process involving at most 256 channels the price would almost

certainly be below $1000.

No pricing has been attempted, since no working prototypes exist.

It seems likely that these cost estimates could be reduced substantially

in a production mode. Other costs, such as boxes, wiring, etc. are easy

to estimate.

There is an alternative approach which appears both faster and

'j cheaper. The idea is to substitute memory for computations by storing

tables of products and lists of reciprocals, perhaps even tables of

quotients.

This is particularly attractive in the real-time on-line encode or

decode since a single decoded channel (i.e. a single processor) keeps

using the same multiplier. So each microprocessor can ask a common

stored Q by Q multiplication table for a copy of the appropriate

Q by I column corresponding to this multiply. Multiply thus becomes a

memory fetch and the memory might even be resident on the microprocessor

chip. A GF(16) based p/s/r process would need only 4*16 = 64 bits of

memory for each microprocessor. A GF(256) based p/s/r process would.

require 8*256 = 2048 bits per microprocessor.

'i."

'I

42

This sort of memory capacity goes for pennies. Of course, when

there are n 65,536 channels the picture changes. For each channel

you need 16 * 65,536 = 400 k bits of memory.

It is again worth stating explicitly that the decoding process and

the encoding process are merely two variations on a theme. After cool

precomputation the sender forms

11(j) =) SEN(J,g)I(g)

(where the sum is over positive integers g < k) to encode channel j

for each j e {k+l, k+2, ..., k+n}.

After hot precomputation the receiver forms

M(j) = . REC(j, w(g))H(w(g))

g

(where the sum is over positive integer g < k) to decode channel j

for each j E DESIDERATA. So it suffices to describe the real-time

on-line decode. The real-time on-line encode is more straightforward.

The abstract design shown in Figure 1.6.1 is the scheme which

should be used. Once again we recall the need to maintain

synchronization of channels in encode and decode. As in Section 1.4.1,

it is easy to do.

2.7 Examples of Computations.

The programs contained in Appendices H and I have been used on

examples, which are included. Appendix D gives tables of ENF for

various fields GF(Q) produced by the cold precomputation program in

Appendix H. Appendix E contains examples of the encoding and decoding

processes as carried out in Stages 2, 3 and 4 by the programs in

Appendices H and I.

4,
"°........3- . ", i

3. Summary of tasks, work, discoveries, recommendations and

alternatives.

The contract between AFOSR and YLYK Ltd. to perform the work

reported on here describes two tasks.

Task 1: Implement the heuristic procedure described in Section 6 of the

proposal by means of computer programs, in order to produce explicitly

the hyperfast pool/split/restitute encode and decode algorithms of the

Bloom technique. Analyze the results, putting the matrices in the most

convenient form, using further computer programs if needed. Determine

the explicit solutions of the cases of most practical importance.

Task 2: Develop a set of design principles for the implementation in

hardware of such p/s/r processes by means of an existing 16-bit

microprocessor.

Mathematically, hyperfast Bloom k-out-of-n p/s/r processes break

up into cases and into stages. There are four "extreme" cases. The

case k = 0 is silly. The cases k - I (send the same message on all

channels) and k = n (hope that all sent messages get to the receiver)

are trivial within the present state of technology. The case k = n-1

is trivial from a mathematical and an engineering viewpoint. But it

seems important and may not be currently in use. Its implementation

- should be separate from the remaining "mean" cases. This implementation

involves 2n - 3 bitwise XOR gates in the format shown in Figures

1.4.1 and 1.4.2. No precomputations are required. For Q = 4000

channels and k = n-I < Q this involves fewer than 8000 gates and a

phase lag (as described above) of some 12 bits.

All other cases, i.e.

2 < k < n-2 < n<

are called "mean" cases in contrast to "extreme" cases. In view of the

facts turned up in the narrative above we make

g.; 4'

44

Recommendation 1: Concentrate first on hyperfast Bloom p/s/r

processes over GF(2), GF(16) and GF(256). Over GF(2) you can

implement an (n-l)-out-of-n p/s/r process for any reasonable size

* . n. It will act on 1-bit words. Over GF(16) you can implement a

k-out-of-n p/s/r process whenever

2 < k < n-2 < n < 16.

It will act on 4-bit words. Over GF(256) you can implement a

3. k-out-of-n process whenever

2 < k < n-2 < n < 256.

It will act on 8-bit words. These three implementations will be

general purpose (i.e. the boxes will allow the user to vary k and

n).

Recommendation 2: Somebody who intends to use more than 256

channels should consider dedicated (i.e. k and n fixed in

firmware or hardware) boxs and should try strenuously to keep the

number of channels small. 4000 channels seems to be at or above

the technically feasible upper bound.

For the mean cases

2 < k < n-2 < n < 2tb sQ

of a Bloom p/s/r process there are four stages of computation. The

first two are noncritical straightforward linear algebraic reductions

and we will not consider them further here, except to make

Recommendation 3: If a particular parameter setting (k,n) will

be widely used (e.g. all Fl6s will always communicate with base by

means of a 77-out-of-92 p/s/r process) then the second stage of

precomputation, the sender's cool precomputation, can be dispensed

with (more exactly, can be incorporated into the cold

precomputation performed before the boxes are manufactured) in

boxes dedicated to 77-out-of-92. The third stage of computation,

the receiver's hot precoiputation can be performed expeditiously.

£.5

5,j. % :

45

A dedicated box can also free a participant in a battle from

unnecessary attention to details. It will usually be cheaper than

a general purpose box.

Recommendation 4. Maintain synchronization of parallel channels in

encode and in decode. Do this by "doing something" trivial to the

plaintext channels so that they acquire the phase lag associated

with the channels which are encoded (or decoded) nontrivially. We

have already discussed the obvious, and inexpensive, expedients

which suffice to maintain such synchronization.

Recommendation 5: If it is desirable to combine p/s/r processes

with cryptography or conventional error control then the following

architecture should be employed. Encryption should precede p/s/r

encoding which should, in turn, precede conventional error control

encoding on the sender's end. By the same token conventional error

control decoding should precede p/s/r process decoding which

should, in turn precede decryption.

If it were built today a memory intensive ultraparallel prototype

of a general purpose k-out-of-n send/receive box for 2 < k < n-2 < 254

would be configured as follows. It wkuld have about 1 mbit

of ROM, broken up into 512 kbits to store a GF(256) multiplication

table, 510 kbits to store ENF and 2 kbits to store a list of

reciprocals of the nonzero elements of GF(256). For these purposes

four 256 kbit (= 2+18 bit) ROM chips will suffice. The box would

employ 256 8-bit processors, perhaps Z80s, to do the cool

precomputations (when switched on send mode) as well as the hot

precomputation (when switched on receive mode). There would be no

logical harm, and only a small time penalty if n is over 200, in

having the precomputations done as if n = 256, the maximum number of

channels. Cool and hot precomputations would take about a second.

The real-time on-line decode would be done by 65,536 - 256t2

dedicated "dumb" processors. The processors will be arranged in 256

clusters of 256 processors. There might be as many as 256 dumb

processors on one PLA chip. During a given session (i.e. for given k

and n in send mode, and for given k, n and w in receive mode.)

*. L. . * -. . . . - i . T V W - . -- - r 'r -- r -- - r . -

%. 46

Each processor would use a 2048 bit RAM which stored an appropriate

column of the GF(256) multiplication table in ROM. This RAM will have

been filLed by the Z8Os during precomputation. The 8-bit word arriving

on channel i will be split into two copies eight times so that a copy

.- of each arriving word goes into each cluster of 256 processors on its

ith channel. When a word arrives at a dumb processor the processor

multiplies that word by its session constant, (i.e. treats the word as

an address and outputs the contents of that address). After that the

outputs from each cluster are XORed together through 8 layers as in a

deeper version of Figure 1.6.1. This yields decodes or encodes for each

channel. This requires 128 mbits of RAM and 65,000 (extremely) dumb

units capable only of outputting the contents of an address. This

configuration would require 512 RAM chips with 256 kbit capacity each.

We have noted that one mbit of ROM will also be needed, as well as 256

Z8Os. The dumb procesors can be parts of a PLA. Presumably some 256

PTA chips would be capable of holding the needed 65,536 processors.

The system would require shift register storage devices (perhaps

1000 cells per register) and would have to verify synchronization of

inputs and impose synchronization of outputs. This would require some

sort of synchronization pulses in the bit streams entering and leaving

- the box. A promising method is to use two voltage levels for bits and a

third for synch pulses, as is standard in television transmission in the

- U. S.

These estimates are all on the highly pessimistic side, since

detailed hardware design has not yet been undertaken.

A smaller device in which 2 < k < n-2 < 14 would require sixteen

4-bit microprocessors, less than 3 kbits of ROM, 256 dumb processors and

16 kbits of RAM. Phase lag would be about 10 bits.

The splitting scheme in Figure 3.1.1 looks forbidding in two

"- dimensions. But in three dimensions it is very simple, no matter how

many channels there are. Figure 3.1.2 is a different rendering of the

same process. It suggests regularity of the architecture more directly.

%.

.. .4

'4

- -47

.1c C

*1',q

*~ .e

.41.4

0 ~

0 0
'44

CO

0

.4-J 0

0-l0

+~ c

0 a

* 4. 4
0c

V+
0 c

4- 00

II '4 e

'4. 0. .

4c- 1.4 "4

4t C

+ ~
49 ..

V) +I

48

w(4)

d." w(3)

w(2) SR

;(I) S
A _ _ _ _ _ _ _

rnA _

A

4

%T

A * ,+

A+

2

..-
+ .4+

Figure 3.1.2

Alternate abstract schematic for decode of four channels

. %

',. ,
4

" , t " ,. " ., " . " , " . "" " . ', . ', . . . ' '. . '.• ' . . ,

49

There are a number of choices facing somebody who designs hardware

implementations of p/s/r processes.

YLYK Ltd. has found a very large number of ways to decode. We

finally fixed on the DATA/DESIDERATA/DELENDA approach to minimize the

number of row operations at the receiver's hot precomputation stage.

But other more pedestrian approaches sometimes use less computer code.

In subsequent efforts, these alternative approaches should be borne in

mind. Which one is used depends on what aspect of the decoding process

is most important. Our approach was to minimize the time interval

between discovery of what channels were inoperative, and beginning of

real-time on-line decode.

There is one alternative which should be resnlved as late as

possible in an SBIR Phase II effort to produce a prototype. The reason

for delaying a decision is the continual shift in relative costs and

speeds of hardware in the marketplace. The alternative in question is

whether to use computation or memory to do Galois field multiplies and

divides. One the one hand there are systolic multipliers. On the

other, a table of GF(16) products requires only 16*16*4 = 1024 bits

of memory. The table below tells the story for various fields.

Field Number of Number of Number of bits
bits to store bits to store to store list
table of products table of quotients or reciprocals

GF(16) 16*16*4 - 1024 16*15*4 = 960 15*4 = 60

GF(256) 256*256*8 = 512k 256*255*8 = 510k 255*8 = 2k

GF(4,096) 202 m 202 m 50 k

GF(65,536) 69 g 69 g 1.1 m

VMemory is cheap. The problem is speed. If words can be accessed

J quickly enough, the use of lookup for multiplication and division is

attractive. XOR of words will, of course, be used for addition and

subtraction.

9 . '% k . -. i., 5 . ..- .. - , . -. ... ,- • ,- -.-. . - .* . , . - • ,.* . . °"" "°'% "%

77-. 1o 0 W 7

50

Consider a GF(i6) based p/s/r process. If each of 16 4-bit

microprocessors has 64 bits of memory "on-chip" the receiver's hot

precompute can load the appropriate column of the multiplication table

into these 64 locations on each microprocessor. This will reduce

multiplication to a lookup of a 4-bit word on a list of 16 words. A

GF(256) based p/sir process would need 2048 bits of memory "on-chip"

available to each of the 256 processors used in real-time on-line

decode. Multiply would be lookup of an 8-bit word on a list of 256

words after the appropriate column of the multiplication table had been

loaded into a given processor. What we have said about real-time

on-line decode applies also to real-time on-line encode, of course.

The relative merits of this approach, as opposed to a systolic

system for computing products algorithmically, could change drastically

as new products came onto the market or the prices of old products fell.

Another unresolved alternative concerns all three stages of

precomputation. Should we use many -smart" existing processors for the

precomputations or smarten up the custom designed processors used for

real-time on-line encode or decode so that they can carry out the

precomputations as well as the encode/decode?

Many of the cheapest old 4-bit and 8-bit processors operate below

I mhz, whereas newer more expensive PLA can be driven faster. It would

take development time to configure smart PLA to perform precomputations,

whereas existing processors can be quickly programmed. It seems prudent

to delay this decision as long as possible, with a view to the state of

the components market the day it is made. Other choices seem more

straightforward. It hardly seems worthwhile to try to fine tune field

size so, as to get, for example, a 17-out-of-34 p/s/r process over

GF(32). The simplicity of assuming that n is no larger than the field

size is worth seeking. Possible exceptions to this approach can be made

on a , individual basis, and will likely lead to a dedicated single

purpose box, such as 3-out--of-6 p/s/r process over GF(4).

S%

U,.,. " ° "
"

" . "• "
-

"
o

" ° ' "
° "

' " - " . '
o

" - - " • " " " "" . .",U., . : -,"' , -,.,, '," . -.:."-". - ' .,-. ' ' . '.•• ,-- . . . " - - . . . , - '. . . -",.-' .,.-" ' .

L'' 51

4. Future.

At this point, what remains is to cast the p/s/r processes into

hardware. Three obvious general purpose (i.e. variable k and n)

implementations would be:

1. (n-l)-out-of-n, for n < 1000 using GF(2) arithmetic on 1-bit

words and requiring no precomputation;

2. k-out-of-n, for 2 < k < n-2 < 14 using GF(16) arithmetic on

4-bit words and requiring precomputations of a few milliseconds in

(cool) Stage 2 and (hot) Stage 3;

3. k-out-of-n for 2 < k < n-2 < 254 using GF(256) arithmetic on

8-bit words and requiring precomputations lasting about a second in

Stage 2 and Stage 3.

It would be interesting to produce a few dedicated (i.e. fixed k

and n) implementations such as:

4. 3900-out-of-4000 using GF(4,096) arithmetic on 12-bit words (it

practice they would probably be the last 12 bits of 16-bit words)

no Stage 2 precomputation, and a several second Stage 3

'C.- precomputation.

5. 100-out-of-4000 using GF(4,096) arithmetic, no Stage 2

precomputation and a several second Stage 3 precomputation.

6. Some half-and-half implementation, i.e. a k-out-of 2k for the

largest value of k which would yield a tolerably short Stage 3

(hot) precomputation. Possibly a 500-out-of 1000 implementation

%° tusing GF(1,024) arithmetic on 10-bit words could hold the Stage 3

precomputation down to just a few seconds.

One mathematical topic which was not targeted for the Phase I SBIR

effort is dynamic reconfiguration. Suppose a sender and a receiver

start out using a 200-out-of-250 p/s/r process to communicate over 250

channel]; w ch ar, all operat tv, at the start. Suppose that a new

V. A

-A _ , '

52

channel goes down every few seconds. It is probably possible to do the

necessary reconfiguration precomptutations one at a time after each

failure so as to keep communications going with negligible interruptions

as the receiver migrates from one set of 200 channels to another

"nearby" set of 200, to another, and so on.

Careful analysis might be able to reduce the Stage 3 hot

precomputation times, given that only one channel at a time goes down.

The viewpont of this proposal is that the receiver deals with n-k

channel failures at once.

An engineering/ergonomics consideration which will have to be

tackled in Phase II, or shortly after, is the question of how the

receiver will ascertain which channels have gone down. Will it be by

human decision that a channel carries nothing or carries garbage? Or

will it be by some automated means of sensing when a channel goes sour

statistically, and is therefore presumed to be down? Or will it be by

sending periodic check sequences on each channel, the idea being that

their absence on the receiving end signifies channel failure? Or will

still some other system be used? There are many existing protocols and

algorithms to sense when a channel is or is not operational. If

possible a p/s/r process box should be a module in a larger systew.

This architecture would enable the user in the field to decide which

method of sensing inoperative channels is appropriate to the system in

use.

Stch considerations may or may not influence the p/s/r hardware

directly, but will certainly be important in the context in which a

p/s/r process is imbedded. Matters of this sort will be taken up in

more detail in YLYK Ltd's SBIR Phase I Proposal to AFOSR. Up to now

speed has been the dominant consideration. In Phase II cost will come

more to the fore.

'. 1 • • .. ,, , ' , ,", . " . . ', " v - . - , - , , - . . - , - , - . -. , . . ,, , , . . ,. - -

A I

*%. .%.

'a!

Appendix A

The technical part of the YLYK Ltd. proposal

which led to this contract

-- N

* 'a..

-'a,

a.

'a....,

4.~

4
a..

.4.

4

aa.~

a.

'V..

91

'a.

U.S. DEPARTMENT OF DEFENSE

SMALL BUSINESS INNOVATION RESEARCH PROGRAM
PHASE I-FY 1983

PROJECT SUMMARY

-,FOR DOD USE ONLY
Program Office .Proposa No. Tic No-

TO BE COMPLETED BY PROPOSER

Name and Address of Proposer
YLYK Ltd.
PO Box 7966

Ann Arbor, Michigan 48107

Name and Title of Principal Investigator Mr. Bob Blakley

President, YLYK Ltd.

Title of Project."lofojcHigh-speed low-cost ways to get messages from a sender to a

receiver when some channels linking them become inoperative.

Technical Abstract (Limit to two hundred words)

Military communications systems are subject to trauma. Certain channels fall for
protracted periods of time. The red noise problem arises when some, but not all, of the
channels linking a sender to a receiver become inoperative. The solutions to this problen
are called pool/split/restitute processes. P/s/r processes amount to ways to encode
digital messages at a sending node so as to make sure that all transmitted information gets
through and is decoded correctly at the receiving node whenever at least k out of the n
channels linking those two nodes remain operative. P/s/r processes are designed to work
even though the sending node has no way to tell which of the channels it is using are
inoperative.

It has been known for at least two years that the encode and the decode operation'
in a p/s/r process are faster and simpler than those in any but the weakest and most
trivial error correcting codes. Moreover the bandwidth expansion is typically smaller in a
p/s/r process than in an error correcting code adapted to do the same job. This project is
aimed at producing a further orders-of-magnitude improvement in the theory of p/s/r

' ~processes. This carries over into a comparable improvement in implementing them.

: Anticipated Benefits/Potential Commercial Applications of the Research or Development
The availability of best-possible p/s/r processes to solve the red noise problem will

make it cheap and easy to design fault-tolerant or fail-safe communications systems at all
levels of complexity, from the microscopic to the global.. The ability to overcome the
unpredictable permanent failure of a certain specified proportion of the channels of
communication in a system may have major consequences in chip layout, design of wiring
within military platforms, commercial vehicles, telecommunications networks, and global C I
-tructureg. The speed and simplicity of the implementation of p/s/r processes gives

%: promise of widespread cheap channel-failure insurance in girabit per second communications.

.

. ' ' " " " "" " " -- .. " "'-.' - ,"" , " , ',,, ,.,. .'..-, '.

3. Ident ification :incl significance of the problem/opportunity.

Thiis proposa l deals with research and development work on the red noise problem
"AS821.* It is one facet of the message gap IBR81; AN83]. It: is associated with the
di:ficultv experienced by two or more centers In communication with one another when a
catastriphic long-lasting failure of some of the communication channels linking them
occurs.

M'o're specifically, the red noise problem concerns a sending node and a receiving
n ode lir<ed by several parallel channels over which informatoion is moving; in dItgital
form. The problem is this. Suppose you are prepared to accept the failure of n-k
ot of the n channels which are initially functioning. How do you encode the
information at the sending node so that all of it gets through as long as any k
channels remain operative? How do you decode this information at the receiving node?

*i Ways of doing this are called pool/split/restitute processes.

Examples of systems faced with the red noise problem are numerous. A few of then.
are:

I. Within a single vehicle or platform -- such as a missile, an aircraft, i
ship, a tank or a spacecraft -- there might be eight separate wires or fibers

N'. %carrying information from an area containing power supplies, engines, control
devices and weapons to an area containing human or electronic controllers.
It is imperative that the controllers continue to receive all of the highest

" priority types of information even though three wires (nobody knows In
advance which three) or fibers are cut by accident or trauma. This
guaranteed 5 out of 8 reliability may have to be cheap in tht sense that it
must be provided by tiny inexpensive circuitry;

1. At the global level or the theater level, consider communications between
commanders and subordinates, or between separate command centers (whether
these are vehicles or cities or redoubts or satellites is irrelevant
mathematically) connected by ten communications channels. Several of these
channels might be optical fibers, several might be microwave relay tower
chains, and a few might be satellite relay links. In the event of emergency
it might be imperative for all high level communications to get throu;i

* continuously after six of these ten channels fail, even when the sender d es
not know which four of his outgoing channels are successfully carrying thei r
information to the intended receiver. It might be imperative to provide this
-uaranteed 4 out of 10 reliability to communications systems working at very
h igh t rates;

% 1II. On the microscopic scale, VLSI and V}iSIC are forcing more active element,; axw,

nre pathways onto a chip. It is Increasingly Important to assure the s,,
arrival of every bit at the proper place in timely fashion even though
certain circuit elements faii. This must be done in an extremely simplo 4,1v
so as not to gobble up too much of the chip just for this assurance of
reliability. Perhaps it would be desirable to use an 8 out of 10 p/s/r
process to move a 16-bit word from memory along ten 2--bit channels so that
the whole word gets through despite the failure of any two of those ten
channels.

IV. The word "channel" should not be allowed to obscure the abstract
possibilities. Separate packets In a local area network can be treated as
separate channels since each packet can be 500, 1000, 2000 or some such 1arg'
number tST831 of bits. The bits in a single packet get through all together

*Footnote: All entries in square brackets refer to the bibliographic citations list
heginning on page 17.

- .• , .° , , .% °o %°• . . ° . °, o . % , °, .. -. •~ X ,

or not at al i according as the I ,:t-L, re. icl,es its desti i-ation, or e £5 e 1i5

destroyeI i : a coIlisiin or o'.t, rwi ci),oes astray lL83a, p. 5; HJ82 ,
76-1011. t coLlisions and misroit in ,!; are present, hut rare, a 63 nut , £4
p, 1;/r I- rOcCs' appi led to success Ive batches of 63 packets from a gi un sender
to a single receiver night provide cheap insurance at a bandwidth expansion
of 1/64 = 1.5%.

Obvi ously, comparable examples could be produced in rany other contexts. But
abstractly they all point up the same need. It is important to find extremely simpl,
encode/decode schemes to provide cheap ways of assuring very high bit rate solutions

N! to the problem of getting all the important information from sender to reeiver
whatever channels remain -- in the absence of prior (or even concurrent) knowledge of
which channels are the lucky survivors -- as long as there are enough channels still

S..Z operative to come up to the initial specifications.

T is might sound rcminiscent of the use of error correcting codes to correct
burst errors, and in a way it is. However, during the two years since the red noise
problem was recognized JAS82] as important in its own right, tailor-made solutions
have been advanced which are much cheaper (bigorithmically, but this entails a

comiparable dollar saving in implementation) than, and much faster than, the use of
standard error correcting code techniques [BL83a, pp. 367-389; MC77, pp. 181-186,
212-213; BE68, pp. 393-394; V179, pp. 227-3001 to solve it.

A moment's reflection shows why this might be so. Error correcting codes are
designed to deal with errors occuring anywhere in the transmitted data stream (as long
as these errors are not too numerous) [V179, p. 341. These errors can be very
irregularly spaced, in a m thematical sense which should become clearer below, red
noise errors can be viewed as occurring with a definite periodicity in the received
bit stream. Such a well behaved type of error, of course, constitutes a suhprobem u!o
the general error correction problem. So it seems plausible (and turns out actu:-1lv
to be the case) that the solution might be conceptually simple, as well as easy to
implement in a cheap fast way. The recent literature (AS821 and some as yet

4* unpublished work, bears this out. But in 1983 a further renmakable simplificaton ar. I
speedup of both the encoding and decoding processes used to solve the red noise
problem has been suggested by current research. Several important instances ot thi,
further orders-of-magnitude improvement have been discovered and verified as th,
result of a powerful heuristic principle. The research on this proJect will attempt
to turn this heuristic principle into a rigorous tool for producing this
orders-of-magnitude Improvement of both the speed and the cost of the
encoding/decoding scheme-, for combatting red noise in many or all cases of thio
problem. It aaLms to produce a complete taxonomy of best possible (or, more pr, :r'!
speaking, almost best possible) solutions of the red noise problem. Time pe rmitt Ilg,
it will make ij preliminary abstract analysis of how to design electronic
implementation of these coding/decoding processes using cheap off-the-shelf components
to attain bit rates well above a megabit per second.

4. Buckground, technical approach and anticipated benefits.

4a. Background. An understanding of the red noise problem and the objects ,Ahii
solve it, namely pool/split/restitute processes, is best acquired by looking,, at th
history of the last five years. In a 1978 NSF proposal, Blakley invented a new
crvptographic object, t he threshold scheme (Ihe called it a key safeguardi s .,;c|,om.,
htit D,,nnhig's w.l1 known cryptogrraphy and data security te'xtbook iDE821 has mad!
threshold cheme t 5, , standird terminology). Ills paper descrIbing the notion, and
givtng the first example was presented at N(;C '79 and publitshed 1B.19 i i t.
proceeding~s of L h.t meetin ;.

A k out of n threshold stcem: is a i thuenvtical way of utilizing a sonrcf, ')
random bit,; to take an Important pl' ct, of di gital i nformatio:, called a snbst, ic,

%

.W.,

-U I It.

r * - VJ _ - - * - i . - . . , : , , . - . . , . i .- - . - ' ,

A5

(there isn't much harm ini thinking of a subs tance as just being a plaitintcxt [aessage:and produl'e n output picces of information called shadows of the original

subs tance. A shadow can, without too much inaccuracy, be thought of as being part of
a ciphertext message. Every shadow is about the same ,ize is the substance and,
collectively, the shadows securely carry the full import of tie sub:itance in the
following sense. There is, on the one hand, a trivial algorithm which can reoroduc;
the substance if any k of the n shdows are inputted to it. But, on the other
iand, it is impossible co gaini any ink.liio of the value of the substance on the has,

o knowled,,,e of only k-I or fewer of the .. hadows. TIe Justificatio, of this latter
staten'nt is somewhat technical. Nevertheless the basic idea can be expre-sed fairly
briefly in terms of what Konheim [K081, p. 311 calI!s the Bayesian opjioe[ILt. u:,t as
it is pssible to prove !BL8IaI the one-time pad [D179 pp. 1199-4)00, DE82 pp. 86-871
perfectly sccure in the Shannon [SH49] sense, so it is possible to prove that a k
out of xi thres'hold scheme is (Sh nnnon) perfectly secure up to thrshold k. ' hi s
means that tL e iayesian opponent cautot modify a (perhaps shrewd) initial gu-ss;
reg'arding the substance on the basi; of knowledge of' only k-I shadows. S o reti. t

Mork- forally:

A posteriori probability that the substance has a value equal to S (given thlt

the objects h(l), h(2), ... , h(k-1) are known to be shadows of that subst n-e)
A priori probability that the substance has a value equal to S.

To be more ccncrete, suppose there is a roll o; magnetic tape (the substance)
which contains the full i: ,.ntory of payloads, locations and targets of all misc iles

helongiro to A on day i). Somebody might think this information important eroirh t(
mt-rit protection by a 4 out of 9 threshold scheme. This will involve use of a trivi.:.t
a!gorittrnr which takes this original roll of tape, together with 4 tape rolls worth ,f
random hit.;, ind prdtu,'es 9 rolls of mag tape (the 9 shadows of the original
subst oe) a!, o1t ptlt;. Now an opponent of A, let is cal l it R, nightll (1U[Le

correctlv suspect :it the outset that several of these missiles are targeted o ,

important spot, call it M. But if R can only obtain 3 of the (shadow) rolls oi
ma, tape it cannot shed any new light on this initial conjecture. It started out with
a good bet that its conjecture is correct. It winds up with exactly the same odds.
If R can .;et 4 of the 9 rolls, of course, the game is over. It has crossed tho
threshold of i.;forr-tion and can reconstruct the entire original roll of ma, tape. ,
it knows evi rythin; A does.

Sharni r, by the way, introduced the threshold terminology in a paper .S179] ' {>
idepcnden t ly iinve1gled the idea of threshold scheme a few months after 1B-9], and

gTave a better example o how to implc 'ent the notion. After the Blakley BI .79 rd

Shamir [.!7(4 ;;apers appeared, several people interested in iiform it jn thet.ry a::
computer s:(,,once took up the topic. Asmiuth and Bloom [AS81 produced i h;,e fam'
threshold s-Snm,. , of which Shamir's was a specia] case. Ticy also g.me t. 0il v
known to Jdat, tror spoof proofing" a threshold scheme, a notion we won't con.-ido.i

furtie r h,.r,,, .Iut they paid a price for this extra feature, a smal l depar:tire t,n

:laulnolu pert,.t , secunrity. Then Bloom IBl,81h 1 generalized tihe one-t lte pi,l (r,. il1v t,.
1 ut of " ca:e of a thre,-h d (scheme, rather than at true I 1a,.90; iDFY;2, p. I')-l

clVpto.;vst,'m) 01i - aS to produce essentially the Iastest possible thrtrshold s,'m . .

Also noted that it is pssible to reduce message, expan.sion in a threshold s,',ler:ne, ,i:t

only at te, cost of reducing security.

Blakley !P1791, Shamir 1S11791, sm ith and Bloom LAS81, and Bloom [BI8hiS
independently disoovered that any k out o t n threshold scheme which mak(, u1,se (11 ,a
finite field LJA'4, pn. 58-62; PL82, pp. 44-58; BI.83a, pp. 65-921 requited tii.t the

field contain at least n elements. Bloom gave a persuasive argument IBPS b] to thr,
effect that thi s w.is nce!;sary in ordvr to attain Shannon perfect security . ID v.vid i
DeMillo and Lipton [DAMP] produced anthc r ttlre:;hold scheme, lie, lium , in company i'
his studonts K-rni in , d (;ro,,n [KA i ,dticed s,'he.s without sharp thresho I d I and

% %

-- w .---. - .---.--- ~ W

-. ,

I4
* ~s how.ed that adding certaina desi rable featur--! to thresholId schieme-±; n(w-rss~ir ily ir r s

Shannon perfect security, thus explainiung wha t As:iiuth and lo(om I AS8 Ii had obset-o--J
rega rding SPOOL proofing. McEliece and Sarwate [MC8 1] produced yet miother .rcto.

011hm, jd drew the theories of threshol d schenx:s and ot C-rro r cors:i ('.dcM; mnt
3 S ir.g-le compaiss by exhibiting an explicit relationship toetween Shl ,-i r'; 1 1h/9j
and Reed-Solomon codes [KE60; BE74, pp. 70-7i].

Two aspects of threshold schemes worth noting explicitly are:

1. Thireshold schemes are related to error correcting codes. But tule 'df-code-" ill
a threshold schcme is trivial, whereas decode can be a formidable liBE78;
NT811 problem, even an NP-complete 1GA781 problem, in ;in error correcting
code.

1 1. As of 1982, most k out of n threshiold schemes made use of finite tfields
(Galols fields) JJA64, pp. 58-62; MA77, pp. 93-124; PE72, pp. 144-1691. All
[AS83; BL79; BL8Ib; SH791 such schemes required a field with at least ri
e leme nts

Last year, Asm~uth and Blakley [AS821 explicitly enunciated thle red noise problem
a nd solved it by means of a p/s/r process based on thle Chinese Remainder Theorcm.

Ts p/ s/r process could be viewed as being just "an Asmuth-Bloom threshold scherme
*c,)mpletely lacking in cryptographic security". Its great advantage was its
% 1flexibility in dealing with information sources with very different Lit rates. Year s

ago Stone JST631 had used much the same approach to solve a problem in the theory of
crror correcting codes.

I h. Trechnical approach. With this background it is now possible to give the
seneral framework of the present research. Thie principal investigator, bobh Einkley,
has already taken a Bloom threshold scheme and produced from it thle correspondii:.

*p/s/r process. It will be called, simply, a Bloom p/s/r process below, lie hss
simulated its operation on a high speed digital computer.

Thek k out of' n case of this Bloom p/s/r process works as fol lows. Sup po:i t
b

that b i., a whole number (positive integer 1MA67, p. 471) so big, that 2 n) Theu.
anifv ancestral list (a(t), a(2), ... , a(k)) of k words [MA67, p. 431 (eachl of ;,.hl!

* is a b-bit word) is- turned into a descendant list (d(l), d(2), ... , d(n)) of ai
h-bit words. This is the encode (i.e. the pool/split) process. It is done in oia
way that any k-word sublist [MA67, p. 2281 (d(j(l)), d(j(2)), ... , d(J(k)) ol. Lt-
descendant list (d(l), d(2), .. ,d(n)) contains enough information to recliaim tlis

*ancestral list (a(l), a(2), .. ,a(k)) inl its entirety. This is done by a decode
* (i.e. restitute) process which uses no more than trivial linear algebra over thfe

finite field GF(2 b). By comparison with threshold schemes and error correcting code,;5

this Bloom-style p/s/r process has the following features.

1. Its k out of n case effects only (n/k)-fold message expansion. Thus its
8 out of 10 case effects a 25% message expansion (from 1 unit to 10/8 1.25
units). This expansion is quite obviously best possible for a scheme which
canl recover eight b-hit ancestral words from any eight of ten h-bit
descendant words.

It. Thie Bloom p/s/r is, to all intents and purposes, the 1)/sir process which u'-!
thle smnalIlest pos!;i blv number of a rlIthmnetic ope rat ions inl thle f inite lie c(! i,
utilizes. Its t'noCde" (I.e. pool/split) anid "decode- eT. rstitt i

p rocesses a re bot hi t r IvI al1, e %h I bi t I rig mulch less compmitat irma 1 c omp IX x v
than the decodes; in iny error correctiniy code which might be adapted Lo din
the(same j oh. Ii(, rvason for thils I s t hat the e rror correct ing cod)le t xiii i
overkill because it is a general purpose tool. It is :nvenuted to dcai <

*many more type.; IHA. O, p. 241 ot "errors" Thami one encounters %ihevn dcalI

%*'

wi th red noise. '[his p/sir process Is a speclal-ptrpose tool for d.al i ng

with red noise.

T 11. P/s/r processes are not cryptographic objects in any sense of the word. They

do not involv :ny type of cryptosecurity. They do nothing; more thati guard
a ,,ainst loss of signal, and tLerefore fall within thie general area ot error
contro I.

j . 4 c. Anticipated benefits. Thie linear algebra of larg, finite fields t ake
many nkchine cycles per multiply or divide. It can also, in the worst circuct: cc(.s,
rvik e considerable demands on memory. W~ring 1983 a heuristic principle hii corn., t(,

light which massively reduces this aspect of the computation in numerous ca,,es. From
!loom p/s/r processes it produces hyperfast p/s/r processes which encode and decode
bytes or larger words in less than ten machine cycles (on highly parallel proce;so(!:s)
for almost all practical choices of k and n. 'Tqhis heuristic sugTgests the
possibility of comparable reductions in many other cases. Consider an example which
at first blush seems extreme. In April, 1983 we have reduced the memory requirement,
for one implementation of a 60 out of 62 scheme by orders of magnitude. As regards
the parameters, 60 out of 62, one cannot readily conceive of so many fibers joining
two nodes. But, returning to the packet-switching example above, it is easy t
imagine one or two packets out of sixty going astray. Also, recently developed
continuously reconfiguring multimicroprocessor control systems [EL83 appear to have
many virtual channels.

At any rate it appears that this heuristic principle -- already successful in
making a k out of k+l or a k out of k+2 Bloom p/s/r process capable of
decoding in something like 3k machine cycles on an ordinary microprocessor, and in
about log(k)+2 cycles on a parallel processor -- will lead to ways to reduce the run
time of hardware implementation of all k out of n schemes by comparable amounts.
This should make them able to run on gate arrays, programmable logic arrays or other
standard cell [NE83, pp. 470-4711 hardware, or even other cheap off-the-shelf devices,

* at rates well above the megabit per second range.

The ability to code and decode at such bit rates becomes increasingly desirable
with the emergence of tiny cheap cleaved coupled-cavity lasers [TH83]. They make it
possible to use a 7.3 mile fiber without a repeater [AB83] to communicate at 420

megabits per second with an error rate of 10- 9 [TH83; L183, p. 3631. It seemt, likcly

. !GO831 that terabit per second comimincation systems are in the ol fing now that 30
femtosecond light iul3es are available. Theoretically, further orders-ot-nmarnitode
improvements in processing galns because of exploitation of photonic efficincy of

. detectors [GAb3, p. 5261 as well as by reans of preservation of polarization [RA-31
are possible even after that. Until optical computers are developed we will noed
code/dcode schen.Ds of m inu'Wcule corq)utatio Idl complexity to deal- with such bit- t.

The hyperfast p/s/r processes have a further advantage, in addition Lu, t,,
computational complexity (which amounts to high-speed low-cost implementab!lity on
simple hardware). They can also be implemented in a highly parallel way, o that
separate devices can d-, concorrent decoding for separate channels, and each d -vice oan
do many operations in p,.rallel.

it is now clear how to move digital information with minimum redunda'cy.

- maximum speed (an unusual plus, best poss.i;ble in two ways) at a modest dollar cost
(which does, however, rf, e with desired data throughput rate) so as to overcome a
predetermined level of threat of channel tailure.

Presumably the existenco of such a capability could affect the des ign of
everything from chips to the fiber "wirin.,' of missiles, slips, tanks, plane,; aied t'o

N%
9/..-...,., .. '.' . . ., ..',: -. :..: .tv ,".". . -:",.,;..,:L ..,.." ,t ..

A8

design of &. I systems in the future. It certainly h, s implement the mi litary
-' digital switching systems criteria [R083, p. 19] of surivability, endurabilit;,

distributed communications, responsiveness, efficient spectrum utilizatioit, and oust
effectiveness. Thus this proposal arguably addresses 6 of the military owrntic!al
system requirements detailed in 1R083, p. 19].

4d. FounJations for Phase II. By the end of Phase I all the alcorirt~ic
principles needed to encode and decode in a Iyperfast p/s/r should be known for evetv
n and k. Basic principles of design for hardware implementation of these algoritlims
should also be available. The design principle will lead one way if minimum cost is
the ultimate goal, another way (high parallelism and custom design) if ultrahigh speed
is the overriding aim, and still a third way if a single unit is to be used for
various different values of k and n.

But in any case the abstract basis on which to proceed to build bench systems,
and then prototypes of field systems, will be firmly in place. The actual desirn wL'1-1
testing program can begin as soon as Phase I is complete.

5. Phase I technical objectives.

In Phase I we hope to exploit the heuristic described in Section 6 below to use
the Bloom approach to suggest a new collection of p/s/r processes, the hyperfast p/s/r
processes. Tle k out of n case can be expected to restitute (i.e. decode) 15 bits
of the information contained in one input channel using fewer than 3k machine cycles
on an existing 16-bit microprocessor if n - k is smaller than 16. The memory

*: requirement for table lookup implementation will be well under 1000 bytes.

The various channels can be recovered concurrently on separate machines if so
desired. Since the decode process is simply a linear combination E c(i)d(i) of

received words d(1),...,d(k) with fixed coefficients c(i),...,c(k) it is even
possible to design a vector microprocessor machine which can move 2k words
concurrently, then perform k products by table lookup concurrently, then add ('hich

is just XOR in GF(2), and thus has no carry propagation) k summands in a sini;le
operation. The vector fetch and the vector dot product E c(i)d(i) can, in theory,
be done in I cycle each. The XOR of k summands can be done in log (k) cycles or
fewer (the log being to base 2). It is even possible to use VLSI to produce a cheap
tilt raparallel implementation in terms of hardwired functions with more than Iwo inputs;
if n is not too large.4.

Examples of times to restitute 15 bits on one channel in implementing the k out
A. of 11 case of such a hyperfast p/s/r process appear to be:

k n number of cycles number of cycles number of cycles
(ordinary (k-vector (ultraparallel

microprocessor microprocessor implementation)
implementation) implementation)

I 10 3 3 4
2 10 6 3 4
4 10 12 4 4
8 10 24 5 A
16 30 48 6
1"3? 40 96 7

t470 192 8
128 140 384 9 "

12,0100 0 8 In 4

I I){)() I I~l 11 7

I. I-. . . . _ . ." , . : - - . . . ,- . ., . . ., , . .- ,. - . - . ;. •

The ex.e't ed form t t lie encode 11)rithn is so simi lar co the expected torn of

tihe d-ofde- that we wi 11 not discuss it here. See Section 6 below.

fhe first technical objective of Phase 1, then, is production o-f the encode
iigor ittam and the decode alvorithm for the k out of n case of a hyperfast p/s/r
process. Ei ch of these is in the tor'n of a bunch of Separ-ite and independent dot

products in k or n dimensional vector spaces over (;'(2h) for sone* positive
ntekger b near log(k).

The second technical objective is a portfolio of abs tract design princip1o. ftr
i:-Pleiutation of such a p/s/r process. YLYK Ltd. plans to ;ketch tie ahstract
principles behind implementing such a k out of n p/sir process by means of ;Ii
existing 16-bit microprocessor, an existing programmable logic array or gate arra',
and a hypothetical vector microprocessor with a 16-bit word size, and vectors of op to
124 words.

It is to be emphasized that the plan for Phase I is to deliver the encode and
decode algorithms in definitive and final form. But YLYK Ltd. will only sketch, as
time .iliads, the basic abstract features of hardware implementation. YLYK ILtd. w i1
not produce hardware, or even the final design of hardware, In Phase I.

0. Phase I work plan.

It is no longer possible to avoid technicalities. Before we describe the
heuristic device for producing these cases of hyperfast p/s/r processes and,
thereafter, finding the general hyperfast p/s/r process it is necessary to look more

deeply into the geometry of Bloom p/s/r processes. The collection

2 3 k-I k
V(kF) = (mm ,m ,....m) : m E: F!

is in general position [YA68, p. 164; MA77, p. 326 in the k-dimensional vector sp;1u,

Fk over any field F. In other words, suppose that k lies between 2 and the
-cardinality [MA67, p. 531 of F. Mhen every k by k matrix of the form

- 1 m(1) M() 2 e ml) k-I

* m(2) m(2) m(2) -

2 *k-

- ne(k) N(k) rM(k) -

(where the n(i) are pairwise distinct) Is ,onsingular because it i,; a Va ., ,

mantrix 11071, p. 125j. 'The formal definition, then, is that a set of vectors is i:i
general position in a k-dimensional vector space W if every one of its k-m,ir1-r
subsets is a basis for th. space W. More important than what we said about, V(k, '),
but far less trivial, is the fact that

V*(kF) = V(k,F) V {(0,O,...,0,1,0,...,O)} V(k,F) (LI

(where the I is In any position) is also in general positLoii. This requlres.- ,'a4,
the theory of symnr,tric polynomials IRF07, pp. 457-4581. So getting just o1e. r,.
vector into the set takes a lot more do Ing. But so far the extra effort qeis
essential to what we propose, to do. The way a Bloom k out of n p/s/r proces;;
works is to take a fairly large set of vectors (at least n of them) In general

position In the k dl r,'sionil vector s;pacv (;F(q over the field (;F (q) ,l

* .- ,' I l(0

e lewnts. Tlere's no harm in taking V*(k, GF(q)) if q > ri. Suppose that q I* a

power of 2, i.e. that q 2 b. Suppose, also, that the p/s/r process i,; nfant to

work by accepting one b-bit word after another from each of k input channels

(ancestral channels) at the source. It should then send one b-bit word after another

dovn each of n descendant channels to the receiver. Each one of these descendant
- 2b

channels is Identified with a vector belonging to V (k, GF(2)). Once some channels

fail, and a decoding scheme is employed on k of the channels which still work, it

acts the sane way on every successive b bits in each channel. So it suffices to

look at a single time slice through the system. In such a slice encoding is done by
"' b(Dk 2b)

defining a linear map [1071, p. 67] L :GF(2) k+ F() by setting

L(w(i)) " the ith b-bit ancestral message

* b
for the vectors w(1), w(2), ... , w(k), in some ordering of V (k, GF(2)), which

corresponds to the k ancestral inputs. These are assumed to be sent unaltered down

the first k descendant channels. In addition to that, the sender solves for any

other -,nember y of V (k, GF(2b)) in the form

y = c(y,1)w(1) + ... + c(y,k)w(k)

as a linear combination of the w(i) with coefficients c(y,i) drawn from GF(2 b).

-. [Down the channe' corresponding to y is sent the message

Ly L(c(y,l)w(l) + ... + c(y,k)w(k)) c(y,l)Lw(l) + ... + c(y,k)liu(,).

b
Addition is GF(2) addition (i.e. exclusive or, XOR, of b-bit words) and

multiplication is GF(2) multiplication, since both c(y,i) and Lw(i) are memberz

of GF(2 h). All the linear algebra is a precomputation, of course. Hence the c(y,i)

are available before encoding starts. Decoding involves a once-for-all solution

(another precomputation) of linear equations to find the {w(1),w(2),...,w(k)} in
terms of a collection of any k of the y's. This gives the Lw(i)'s (the ancestral

b-bit messages) in terms of the Ly's (the descendant b-bit messages). The whole

thing works because any k members of V (k, GF(2b)) are a basis for the vector
hi'

space GF(2b) k , i.e. because of the general position assumption.

This souuds abstract, for the usual reason. It was written to fit into a small

compass, without too niny numbers and subscripts littering the printed page. BuIt all
the objects are explicitly given. For example, a 3 out of 7 p/s/r process coIld
make use of the field GF(8), the 3-dimensional vector space GF(8) , and the

9-member set

V (3, F(8)) ={(1 m,m: m - GF(8)} I' {E},

where c is either (0,1,0) or (0,0,1). For a Bloom p/s/r process it doesn't

matter which. For our purposes, building hyperfast p/s/r processes, the choice of

seems to be crucially important. It appears to require an amount of trial and e rr:r

tedious for humans, but trivial on a conuter.
t

- A k out of n Bloom threshold scheme would require use of GF(2) where

2 > n. Thus a 990 out of 1000 scheme would require GF(1024) multiplIcation. i
S"tab'e lookup mode this would require a table of over one rmillion 10-bit word.-;.

e" .,."J

'. All

A

Obviously one would trade time off against memory. but then each multiplication wo':ld
involve dozens of mauchine cycles, and each division could require hundreds. The
simple heuristic we describe below says that the threshold scheme analogy is
hopelessly pessimistic. A 990 out of 1000 hyperfast p/s/r process should require only
CP(16) maltiplications. This uses only a table of 256 four-bit words.

bThe heuristic for producing hyperfast k out of 2 +1 p/s/r processes which u.s
linear algebra over extremely small fields of characteristic two [JA64, p. 61; P1,82,

* p. 46; BL83a, p. 801 goes as follows. Do not use just any collection of 2b+l

vectors i.i general position over GF(2 b)k Use V*(k, GF(2b)), where the vector
= (0,0,...,0,1,0,...,O) is chosen by trial and error from among the k possible

b kunit coordinate vectors [NO69, pp. 473-4741 in GF(2b) to satisfy the following
- condition.

Heuristic: A k out of k+j hyperfast p/s/r process can be formed, in the Bloom
b b *bmanner, over GF(2) if j < 2 Form a Bloom p/s/r process using V (k, GF(2b))

for each possible choice of e f (0,0,...,0,1,0,...,0) and examine the corresponding

coefficients c(y,i). There is a minimal E, in the sense that all the c(y,i) for

this r belong to a smallest subfield of GF(2 U), where 2 > k+j. This minimal s

emay have the property that all c(y,i) belong to GF(2), where j < 2 , and whe-e
e is the smallest integer exponent for which this is true.

n% In the following paragraphs we will give some motivation for the heuristic. liere

% is a summary of the known cases of a hyperfast p/s/r process it has suggested,
. directly or indirectly:

4 out of 5 over GF(2), followed by general k out of k+l over GF(2);
3 out of 6 over GF(4), and 4 out of 6 over GF(4);

7 out of 14 over GF(8).

This last was made possible, with limited computer power, by adroit use of Zech's
logs [MA, p. 91-92]. It might lead to a more general k out of k+7 hyperfast p/slr
process over G6(8) soon. Conceivably the cases 8 out of 14, 9 out of 14, and 10
out of 14 can also be produced over GF(8) and made to give rise to more general
cases involving k out of k+7, k out of k+6, k out of k+5 and k out of ', +4
over GF(8). [kt to get such things as a k out of k+8 p/s/r process using only
the arithmetic of GF(16) will likely require the effort and the computer power of an
IBM PC programmed in assembly language running for hours.

We recall that GF(2) Z/(2) is fBL83a, pp. 69,751 the field of two elem its,
i.e. the integers modulo 2, i.e. the set {0,1} under the addition and multiplication
tables

+ 0 1 * 0 1

o 0 1 0 0 0

1 1 0 1 0 1

The following encode and decode rules obviously work for a 4 out of 5 p/s/r,

where all arithmetic is done in GF(2). To encode (i.e. to pool/split) an ancestral
list (a(1), a(2), a(3), a(4)) of four 1-bit words, let

d(1) = a(1); d(2) = a(2); d(3) = a(3); d(4) = a(4);

d(5) = a(l) + a(2) + a(3) + a(4).

To decode if d(5) is missing set:

a(l) = d(l); a(2) = d(2); a(3) - d(3); a(4) - d(4).

Al 2

'0:

I f d(1) Is Pmissing set;

a(l) d(2) + d(3) + d(4) + d(5); a(2) = d(2); a(3) d(3); a(4) d(4).

--. If d(2) or d(3) or d(4) is missIn, the obvious analog of the case immediately abovu
decodes successfully. This can be more readily seen in terms of matrices over [H1071,

*.p. 61 the field GT(2)

a(l) () 1 0 0 0 0 1 1 1 i 1 0 0 0,."-I a(2)| d(2) 0 1 0 0 0 0 0 0 1 0 1 1 1

A= a(3) D= d(3) , E= 0010 M[1= 0010 0 M[21= 0 100
a(4) d(4) 00 1 0 00 1 j 0 0 0 1 0

d(5) I I I I

10001 1 000 1 000

M131 I 01 , M[4] = 0 01000 1 0 .
0 0 0 1 1 1 1[10 0 00 0

Then encoding is the rule D = EA. And decoding is the rule A = M[i]D when J(i)

is missing. This works because

M[i]D = M[i](EA) = (Mli]E)A = 1A = A

when the ith entry of D is absent. This is because every M[ii is a left inverse

[NO69, p. 11] of the nonsquare matrix E, and because M[i]D is independent of d(i)
(since the ith column of Mli] contains only zeros). Clearly [N069, pp. 11-17,

132-135] E cannot have a right inverse [NO69, p. 11].

Instead of a 4 out of 5 p/s/r we could as easily have defined a k out of
k+l p/s/r process using only the aritlmetic of GF(2). This is quite unlike what
happens when threshold schemes are involved. To implement a k out of k+1
threshold scheme you must use the arithmetic of the much larger field GF(Q), where
Q > k+l.

The extreme simplicity of this k out of k+1 p/s/r process (its use of only
GF(2) arithmetic) is not a fluke. Moving up the scale, it is possible to implement a

k out of k+3 hyperfast p/s/r process using only the arithmetic of GF(4). This is,
one recalls [MA77, p. 101; BL83a, p. 75], the set {0,1,r,s} under the addition and
multiplication tables

+ 0 1 r s * 0 1 r s

0 0 1 r s 0 0 0 0 0

1 1 0 s 1 1 0 1 r s

r r s 0 I r 0 r s 1

s s r I 0 s 0 s I r

It is commonplace to represent these four "numbers" as 2-bit words:

0 = (0,0); 1 (0,); r - (1,0); s = (1,i).

Evidently, then, + is just the 2-bit word exclusive or operation, XOR. And *

be implemented by means of a table with sixteen 2-bit entries.

For brevity we nereIy give the matrix form of a 3 out of 6 hyperfast p/,/t

process in tcrms of mtrices over [H071, p. 6] the field CF(4).

= ,,_'e-:~io , , - ,;,.;. - ,' ' . .*x: -. c- :.' "> -v -....-:. -: .-.-. '.-':. .'-"§.

L A 13
1 A1 3

S100 0 0 1 1 1 0 0 1 0 sr
A= a(2)j D-d(3) E= 0 0 , 1 2,3] 0 1 s MI1,2,4] 0 0 1 0 1 ,

a() d(4)J 000rrSI 0 0 1 0 0~
d(6) s

0 s r 0 s 0 0 r s r 0 0 1 0 a r s
M11,2,51 0 0 r s 0 s M1,2,61 0 0 r r 0 , M1 3,4 0 1 0 0 0 01,

0 0 0 0 0 1 0 0 1 C 0 1 I

M[1,3,5] = 1 0 0 0 0, M11,3,61 = 1 0 0 0 M{I, 4,51 1 1 0 0 0 0
0srsOOr 0 r0ss 00 1 000

M[1,4,61 = 1 0 0 0 , M[1,5,61 = 1 0 0 , M12,3,4] = 1 0 0 0 r s
0 01 O0 0 1 0 O s

[100o00i Li0Ooo0 f
M12,3,51 s 0 0 r 0 1 M[2,3,61 r 0 0 s 1 , M[2,4,51 = U s 0 0 r

r0 0 1 s0 0 r 1 0 L 0 1 0 00

0)0 0 1) 0 000 V 1 J 0 0 0
M[2,4161 K O r) 1 , M[2,5,6] 1 0 1 1 0 0 M[3,4,5] 0 1 0 0

Mf3,4,6[1 0ino , Mf3,5,61 0 1 0 0 0 0, M[4,5,6] 0 1 0 0 ; .
.s 0 0 1 0 1 10 1 0 000 1 0 !

To encode, set 1) = EA. To decode, set A = Mw,x,y]D when d(w), d(x) and d(y)
are missing. [his works hcause

M~w,x,yJD = M~w,x~yJ(EA) = (M~w,x,yJE)A IA =A

even though the wth, xth and yth entries (d(w), d(x) and d(y)) of D are
unknown (the product M[w,x,y]D is independent of them because the wth, xth and
yth coluums of K~w,x,yj are zero). It is easy to verify that, in the arithmetic of

GF(4), every one of the twenty matrices M[w,x,y] is a left inverse of E. Finally,
it is a striightforward matter to produce k out of k+3 generalizations of this
hyperfast p/s/r proc-ess, tzsing only the arithmetic of GF(4).

The major part of the work plan is to write, to run, and to analyze the output
of, computer programs for using the heuristic principle to find the encode and decod.
algorithms for successiv'1y larger cases of hyperfast p/s/r processes. This will

involve a great deal of run time. Hence it will be necessary to obtain an IBM PC and

,,**% *I; . ' *. <, , .- ...--.. -........... -.- ,...-..........,.......

A14

use it throughout the project. See Section 8 below. First we propose to find the

form of general:

k out of k+4; k out of k+5; and k out of k+6

p/s/r processes using only GF(8) arithmtic, then general

k out of k+7, ..., k out ot k+14

p/s/r processes using on ly GF(16) aritht i c, then general

k out of k+15, ..., k out of k+36

p/s/r processes using only GF(32) arithmetic, and so on. T1hese results, which
already contain the larger part of the foreseeable practical use of cheap hyperfast
p/s/r processes, can be expected to lead to tile form of the general k out of k +j

bb
p/s/r process using only the arithmetic of GF(2), where J < 2

Once this is done, the rest of the work plan is to do an abstract design of
hardware implementation of p/s/r processes. For packet switching [SL81] and other
sequential-arrival-of-words type applications, low cost and minimum parallelism rriy 1e
the overriding design consideration. For other applications, perhaps involving
physically parallel channels transmitting concurrently, cost and use of off-the-shelf
comporents may take a back seat to speed. In this case it may be necessary to provide
abstract designs of encode and decode processes utilizing parallel processing, or even
the ultimate ultraparallel implementation so as to approach the four-machine-cycle
ideal of encoding and decoding speed mentioned in Section 5 above.

The last part of the work plan, also an abstract design task, is to sacrifice
speed or economy or both so as to produce general purpose decoders. In other words we
want to classify the pairs ((k,n), (k*,n*)) with the property that an encoder
(resp. decoder) for a k out of n p,'s/r process will encode (resp. decode) for a
k* out of n* process as well.

Cies of this are known. It is easy to turn the implementation of a 3 out of
f hyp',rf;,,;t p's/r process using only GF(4) arithmetic into the implementation of a
2 out c.f 4 hyperfast p/s/r process using only GF(4) arithmetic by "tying some
channel:; to ground', i.e. by sending only zeros over them (or having the receiver
pretend that only zeros are sent over them). We omit details, which a reader can
easily work out. Obviously you pay a price in bandwidth. In this example a 3 megabit
per second throughput is reduced to 2 megabits per second. It is reasonable to
conjecture that a k out of n implementation can be trivially turned into a k*
out of n* implementation this way if k* < k, n* < n, and n*-k* < n-k. It would
be desir:ible to verify this conjecture and, if possible, extend it. The advantage (,f
having a few versatile boxes (general purpose communication tools) can sometimes
outweigh the panoply of unique advantages peculiar to each of a large number of
dedicated boxes (precision single purpose tools) in a military context.

Actual hardware deF ign- is not part of Phase 1. It will he left to Phase I.

7. Phase I statement of work.

The work will start. with the production, and numerous runs, of a program to
implement the heuristic device desctibed tn Section 6 above. It is strongly indic;itj
by much evidence In the cases n k, n = k+l, n k+2, n = k+3, and n = k+7
that a properly clho_,en Bloom p/s/r gives rise to an appropriate hyperfast p/s/r for
any choice of . ild ji. 'lle program will produce the list of matrices which embody
this hyperfast k out of ,1 case, for each choice of k and n. By the end of t"%
months the first of tlese results (the cases 4 < k < 7, n around 60) will be

4' available. Within tih following month or two, the o'ther cases most important to Ci
general sohiti'!i of t ,e pruhiem of xii ding all hyperfast p/s/r processes should b

A '• %" " "" "" " 2 ".

..

A 15

available. Tiey may noL be in the best form. if aet, an interactive matrix
Tini pulat ion pro :,r.m will be produced to forniat them in the manner moas t cotiducl ve t(,

- reading if the general structure of the mtrices which embody a hyperfast p/s/r
process. lhe last two nonths will be devoted to discovering, and then proving
t'orrect , the forn of the general hyperfast p/s/r process. Even if the general

- .solution is not. iound, most cases with any conceivable practical. importanc, h1 Ivv- '. been se.ttled.

been "s"t abtdact designe principles for implementation can proceed concurt-t,. lv w[I
tl::? di ',,- process over the last I of the 6 months of the project. The reaso:i 1,,r
CI iS that the general form of the solution is known. oth encode arid decod, :ir,-
dut products between vectors in an n dimensional or a k dimensional vector space.
W.:it is not yet conclusively demonstrated, though we gave a well motivated ill cme
in Section 6, is the size of the fields underlying these vector spaces for a give
cLoice of n and k. And the number of occurrences of each member of that field i
quite my:terious. But, as these pieces fall Into place case by case, the abstract
deslgn principies can evolve Iteratively.

At the end of the sixth month YLYK Ltd. will deliver a report. The report will
- contal O a catalog of k out of n cases of hyperfast p/s/r processes embodied 'n

lists of matrices for various important values of k and n. If the work meet, with

complete :uiccess it will In fact give the form of the list of matrices embodying the

general k out of n hyperfast p/s/r. Finally, it will describe the abstract desii',
principles of implementing such p/s/r processes on currently available off-the-shelf
hardware, as well as on a hypothetical vector machine or even a hypothetical
ultraparallel processor.

P. Fa ci I i ties !eq uipme nt.

So far the hyperfast k out of k+l, 4 out of 6, 3 out of 6, and 7
out of 1.'i c;,ses of a p/-;/r process have been produced with no more computer power
than a, HF -, I(C. This is b!cause the fields In question are quite sli. lience no
il;ctl L-fx lar-i cr titan 14 by 14 is,; needed to turn the heuristic pri ciple de'scribed 'n

I i 2 (e i nto an .nfinite collection of encode/decode r il es. *M t n ord, r to
!yo ndeyndt I:; It will be necessary to at least double the size of the Galois field

ill qu(:' t ion. It will also be necessary to do linear algebra with matrices larger Thin
30 by 3tu. And by the time the general form of th,- encode/decode procedure for k
out otL processes enirges we will probably be dealing with something like a k cdt.
:of k'+l(' ,,,;,e. Tits w;ill involve fields with more than 100 elements, and

(exLren,2 iy sp;ar:;e) ;ttri,:es if size approximately 2(,000 by 20,0)0 over such t!e id1.

The ,alcti.tttlonis inv(o[ved will require a computer capable of supporting FORTP,'/.>,
as well an being easi ly programmiable in its own assembly language, and with sizable
me mory. 7ho IBM Personal Computer is just about the smallest of the machines capable
of carrying out this provram. Buat with 64K RAM, and assuming adroit pro-:ramming ad
use of disk memory, it will be possible to explore the consequences of the heurisJtic
principle mentioned In Section 6 above within the size ranges aforementioned. No
other special equipment will be required to complete the project.

The 2-room facilities available to YLYK Ltd. at Ann Arbor are adequate to th,
task at hand. They can accomndate the IBM PC and provide the principal investiator
with a work area and necessary library and drafting facilities. Other personnel can

be accommodated there, or else assigned duties to be performed on their own prCmi.s ,,

in CoTslltant fashion.

9. Consultants.

(i arles Asirt h (Ph.D. R Ithmrtl I s, University of Chicago, 1976) did postdoct , I
work a t t lh- I untItut for Advanced t dy In Princeton, New Jersey. lie taught iii It,.

• ,4

A 16

F.. Ie!tpartMto IL Of thnur c;aJ sA&IM before taking his presunt posit ion as a!;: istailt
~ .. profes-,or in tl,--' departrii~t o1 mathematics and computer scienice at Rutgers Uiiversi ty

(.:-wa rk) lie is authior or coauithor of some te n papers in ria hematics and fIts
;ipictooespecially information thor and cryptography. lie will be z! conSultanot

u n Ilf prop~osed re.search. is! combiniation of knowledge in electrical enginee--ringj,
co!r.;L.tter science and abstract algebra will be useful in going from the clas~L~ficzation
ol 1hyperfast p)/s/r processes to implumeutation.

G~. R. Blaki ty (Ph.D. clathematics, University of Maryland, 1960) did postdoCt-ota 1
wo rk at Cornell and Harvard. lie has h: en onl the mathematics department faculty oif thce

N: University of [ItLinois (Urbana), SUNY at Buflfalo, and Texas A&M (where he was
departn.tnt head for many years, and where he is currently a professor). He is author
or coauthor of some 30 papers In mathematics and its applications, especially
information theory and cryptography. Hewill be a consultant onl the proposed
research. His expertise in linear algebra will be useful in finding a g-eneral sclheme
1inder which the anticipated abuindance of hyperfast p/s/r processes can be classified.

Jli Bloom (Ph.D. , Mathematics, CalTech, 1977) taught at the departiret of
mather;.itfcs, fexis A&M University, before taking his present research and development
position at Chevron, La Ha-bra, California. He is author or coauthor of somn ten
papers a-.-d technical reports in mathematics and its applications, includlig
information theory. Hle wtll be a consultant on the proposed research. His exdertiw
in algebraic number theory and algebraic geometry will be especially useful in the
very fir! t phase, formulating the programs which implement the heuristic based on~ thle
Bloom p/s/r proce!sses and produce examples of hyperfast p/s/r processes for various
choices of k and n.

10. Related work. Bibliographic citations list.

Bob Blakley served as a draftsman for the City of Bryan, Texas, in the swmrapr .r
1978. lie is -in expert scientific programmer, having been employed at various times
over the last three years i software production and maintenance by research contrat.
and giants in tile Mathematics, Mechanical Engineering, Statistics, Chemistry,
liocheFristry and Biophysics departments of Texas A&M University, the Geophysical Fluicl
1)vnai-l cs Labhoratory at Ptrneeton Untve rsity and the University of Mi chigan Computer

Cneas well as for YLYK Ltd. of Ann Arbor, Michigan. He has had extensive
*experienic in algebraic scienitific software production, some of it in collaboration

with G. R. Jlakley. lie has produced sizable module fHE74) theoretic generalizations
of linear algebr~ic programs for chemical applications. He has producedI programs ffr
the arith;.?eti c of -. n-dic rings [MA81J and the arithmetic of finite fields of
characteristic 2. lie has implemented computer simulations of both the Asmuitt-hilnkIcy
[AS821 p/s/r analog of the Asnmth-Bloom threshold scheme 1AS83] and thle Bloom-style
p)/s/r analog cf the Blnoom threshold scheme [BI,8lbi. He has a substantial acadeimic
background Jn load: c, computer science and natural languages. He is conversant witth a
dozen computer I anguiigis, several of which are assembly languages.

C. A. A ;ixih is one of the leading practitioners In the theory of threshoic
schemes [AS8311, p//ir proccsses 1AS821 and their applications JAS811. He has a
practical failiarity wi~th dligital electronics extending back many years. Hs gra4zj
of abstract algebra and abstract harmonic analysis is highly sophisticatfed.

G. R. Blakley inivented IBL791 threshold schemes, and is a major contribuitor
[BL8(); BL,8 a; 31821 t.) the.ir theory. With Asmuth, hie first explicitly identified the
red noise problem [AS82Jl and solved it. (though Bloom certainly (BL81b) foreshadoweci
this solution). lie works actively JBL83bJ on minimal compataitional complexity
algorithms for s chentiftc ;nd mathemat teal computations. his interest in linear

___ algebra, and its app] ic'it ions outside mathematics, goes back twenty years, and h:i:,
issued ill nume'roeus pub Ii ci~tons not cittod here because they d r c not direct ly r

A 17

to the topic at hand. The term lineair algebra is used here in an expansive sense
which includes matrix analysis on the analytic side, and Integer matrices -- arid, more
generally, module theory -- on Che abstract algebraic side. 'I is currently principal
investigator on a National Security Agency grant to do unclassified research in
information theory, some a:spects of which are related to the theory and practice of
p/s/r processes.

J. Bloom is the Inventor of the loorn threshold scheme iBL8lb , the fastest

known. Jis work prcfigured the development of the Bloom-style p/s/r processes and the
hyperfast p/s/r procc'-ies. His influence is major and his insight into every aspect
of the subject is incisi ve. His grasp of geometry, including algebraic geometry, is
powerful. fie has devoted tho, Last two years to sophisticated programming efforts on
computers near the edge of the envelope.

,.'. C. Asmuth, Bob Blakley, G. R. Blakley and J. Bloom have all known each other for
more than five years. They communicate effortlessly with eacn other on technical
matters. The requested travel funds will be used to get two or more of them together

-V for periods of several days at several points during the work.

IBBL[OGR:-dHIC CITATIONS LIST

AB83 P. II. Abelson, Glass fiber communication, Science, Vol. 220 (1983), p. 463.
AN83 Anonymous, C experiment explores data restoration, Aviation Week and Space

Technology, Vol. 118, no. 17, April 25, (1983), pp. 155-158.
AS81 C. A. Asmuth and G. R. Blakley, An efficient algorithm for constructing a

cryptosystem which is harder to break than two other cryptosystems,Computers
and Mathematics with Applications, Vol. 7 (1981), p. 447-449.

AS82 C. A. Asmuth and G. R. Blakley, Pooling, splitting and restituting
information to overcome total failure of channels of communication,

S.' Proceedings of the 1982 Symposium on Security and Privacy, IEEE Computer
Society, Los Angeles, California (1982), pp. 156-169.

AS83 C. A. Asmuth and J. Bloom, A modular approach to key safeguarding, IEEE
Transactions on Information Theory, Vol. IT-30 (1983), pp. 208-210.

BE68 E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York (1968).
BE74 E. R. Berlekamp (Editor), Key Papers in the Development of Coding Theory,

fIEEE Press, New York (1974).
BE78 E. R. Berlekamp, R. J. McEliece and If. C. A. van Tilborg, On the inherent

Intraotability of certain coding problems, IEEE Transactions on Inforatilo.i
Theory,Vol. IT-24 (1978), pp. 384-386.

13L79 G. R. Blakley, Safeguarding cryptographic keys, Proceedings of the National
Computer Conference, 1979, AFIPS Conference Proceedings, Vol. 48 (1979),)p.
313-317.

BL80 G. R. Blakley, One-time pads are key safeguarding schemes, not cryptosystem,.
Fast key safeguarding schemes (threshold schemes) exist, Proceedings of the
1980 Symposium on Security and Privacy, IEEE Computer Society, New York
(1980), pp. 108-113.

BL81a G. R. Blakley and Laif Swanson, Security proofs for information protectic n
systems, Proceedings of the 1981 Symposium on Security and Privacy,
IEEE Computer Society, Los Angeles (1981), pp. 75-88.

BL81b J. Bloom, A note on superfast threshold schemes, Preprint, Texas A&M
University, Department of Mathematics (1981), and Threshold schemes anid error
correcting codes, Abstracts of Papers Presented to the American MaLheTvitic .,i
Society, Vol. 2 (1981), p. 230.

BL82 G. R. Blakley, Protecting information against both destruction and

unauthorized disclosure, Proceedings of the 1982 Carnahan Conference on
Security Technology, Univ. of Kentucky Press (1982), pp. 123-133.

BL83a R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley,

Reading, Massachusetts (1983).

.5 ..."

• ° .o •.. . ° • . . • . - , o

A18

BL83b G. R. Blakley, A computer algorithm for calculating the product AB modulo M,
IEEE Transactions ou Computers, Vol. C-32 (1983), in press.

BR81 W. J. Broad, Reagan eyes the message gap, Science, Vol. 214 (1981), p. 312.
DA80 G. I. Davida, R. A. DeMillo and R. J. Lipton, Protecting shared cryptographic

keys, Proceedings of the 1980 Symposium on Security and Privacy, IEEE
Computer Society, New York (1980), pp. 100-102.

* DE82 D. Denning, Cryptography and Data Security, Addison-Wesley, Reading,
Massachusetts (1982).

- D179 W. Diffie and M. Hellman, Privacy and authentication: An introduction to
cryptography, Proceedings of the IEEE, Vol. 67 (1979), pp. 397-427.

EL83 B. M. Elson, USAF studies new computer concept, Aviation Week and Space
Technology, Vol. 118, no. 19, 9 May (1983), pp. 69-71.

GA78 M. R. Carey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco (1978).

GA83 J. Garrett, Pulse-position modulation for transmission over optical fibers

with direct or heterodync detection, IEEE Transactions on Communications,
Vol. COM 31 (1983), pp. 518-527.

G083 R. J. Godin, Laser tool brings ultrafast devices closer, Electronics,

Vol. 56, no. 9, 5 May (1983), pp. 112-114.
HA80 R. W. Hamming, Coding and Information Theory, Prentice-Hall, Englewood

Cliffs, New Jersey (1980).
HE74 T. Head, Modules: A Primer of Structure Theorems, Brooks Cole, Mcnterey,

California (1974).
H071 K. Hoffman and R. Kunze, Linear Algebra, Second Edition, Prentice Hall,

Englewood Cliffs, New Jersey (1971).
JA64 N. Jacobson, Lectures in Abstract Algebra, Volume 3, Theory of Fields and
,', Calois Theory, D. Van Nostrand, Princeton, New Jersey.
""%81 E. D. Karnin, J. W. Greene and M. E. Hellman, On -ecret sharing systems,

Verbal presentation, Session B3 (Cryptography), 1981 IEEE International
Symposium on Information Theory, Santa Monica, California, February 9-12
(1981) and On secret sharing systems, Preprint, Stanford University,
Department of Electrical Engineering (1981).

K081 A. G. Konheim, Cryptography: A Primer, Wiley-Interscience, New York (1981).
L183 T. Li, Advances in optical fiber communications: An historical perspective,

IEEE Journal on Selected Areas in Communications, Vol. SAC-i (1983), pp.

356-372.
MA67 S. MacLane and G. Birkhoff, Algebra, MacMillan, New York, 1967.
MA77 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes,

North-Holland, Amsterdam (1978).df
MA8I K. Mahler, p-adic Numbers and Their Functions, Second Edition, Cambridge

University Press (1981).
MC77 R. J. McEliece, The Theory of Information and Coding, Addison-Wesley,

Reading, Massachusetts (1977).
MC8I R. 1. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes,

Comnrrnications of the ACM, Vol. 24 (1981), pp. 583-584.
NE83 S. B. Newell, A. J. de Geus and R. A. Rohrer, Design automation for

integrated circuits, Science, Vol. 220 (1983), pp. 465-472.
N069 B. Noble, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, New Jersey

(1969).
NT81 S. C. Ntafos and S. L. Hakimi, On the complexity of some coding problems,

IEEE Transactions on Information Theory, Vol. IT-27 (1981), pp. 794-796.
PE72 W. W. Peterson and E. J. W~eldon, Jr., Error Correcting Codes, Second Editf, n,

M.I.T. Press, Cambridge, Massachusetts (1972).
4 PL82 V. Pless, Introduction to the Theory of Error Correcting Codes,

Wiley-Intersclence, New York (1982).

4,

A19
.1..

0O2
0P82 R. D. Posner, Packet Switching, Lifetime Learning Publications, Belmont,

California (1982).
" SH149 C. E. Shannon, Communication theory of secrecy systems, Bell System Technical

Journal, Vol. 28 (1949), pp. 656-715.
PA83 S. C. Rashleigh and R. If. Stolen, Preservation of polarization in single mode

fibers, Laser Focus with Fiberoptic Technology, Vol. 19, no. 5, May (1983),
pp. 155-161.

RE60 I. S. Reed and G. Solomon, Polynomial codes over certain finite fields, .1.
SIAM, Vol. 8 (1960), pp. 300-304.

PE67 L. Redei, Algebra, Volume 1, Pergamon Press, Oxford (1967).
R083 M. J. Ross, Military/government digital switching systems, IEEE

Communications Magazine, Vol. 21, no. 3, May (1983) pp. 18-25.
SH79 A. Shamir, How to share a secret, Communications of the ACM, Vol. 22 (1979),

pp. 612-613.
.LS81 M. F. Slana and I. R. Lehman, Data communication using the telecommunication

network, Computer, Vol. 14, no. 5, May (1981), pp. 73-88.
ST63 J. J. Stone, Multiple-burst error correction with the Chinese remainder

theorem, J. SIAM, Vol. 11 (1963), pp. 74-81.
ST83 B. W. Stuck, Calculating the maximum mean data rate in local area networks,

Computer, Vol. 16, No. 5, May (1983), pp. 72-76.
TH83 D. E. Thomsen, A pure laser for clean communications, Science News, Vol. 123

(1983), p. 260.
V179 A. J. Viterbi and J. K. Ormra, Principles of Digital Communication and

Coding, McGraw-Hill, New York (1979).
7. . YA68 P. B. Yale, Geometry and Symmetry, Holden-Day, San Francisco (1968).

I!. Key Personnel.

YLYK Ltd. was incorporated in Delaware on 4 June 1979. It is currently
headquartered in Ann Arbor, Michigan. It has produced software, designed algorithms,
designed systems in the area of coding, communiications and cryptography, and has
conducted studies.

Bob Blakley, horn 13 July 1960 in Washington D.C., is a citizen of the U.S.A. and
a 1982 honors graduate of Princeton University. He married Karen Hejtmancik of
College Station, Texas, on 7 August 1982. His previous technical employment history
can be found in Section 10 above. He is currently involved in part time teaching and

graduate study in computer science at the University of Michigan. He is coauthor of
i three papers Oil cryptography and information theory in Cryptologia, Volume 2 (1978),

pp. 305-321, Volume 3 (1979), pp. 29-42, and Volume 3 (1979), pp. 105-118. He is

president of YLYK Ltd., and will be principal investigator on the proposed research.
His Social Security Number is 460-06-2353.

12. Current and pending support.

SBIR proposals very similar to this proposal, all bearing the title

High-speed low-cost ways to get messages from a sender to a receiver when
soak! chantnels linking them become inoperative,

and all having Bob Blakley, President, YLYK Ltd., as principal investigator are being

submitted in May 1983 to the following DOD components under DOD Program Solicitation
Number 83.1, Small Business Research Program, Closing date 31 May 1983:

-°I .

B!

Appendix 13

Tables of GF(2*tN) arithmetIr

J i tion Ti oe for 3F 2**2 1cd~7

+ :

22302
.':-.', 3 2, 1 2 0

-.

Multiplication Table ior GF 2**(2m od(7

• *) o12 3
,) 0 0) , 0

S 012 3
2 i0 2 3 1

0 3 1 2

aditiort Table for GF 20* (3) Mod(13

+ 0 1 2 3 4 5 6 7

i1 7 3 4 5 6 7
-. 1 4) 3 2 5 4 7 a

2 2 3 0 1 6 7 4 5
') 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0) 1
7 6 5 4 7 2 1 0

luiti.lication Table for GF 2**(3i Mod(13

,',.. + 0 1 l 3 4 5 6 7

-'u' 0 0 0 C' 00
+ :01234567

1 U 1 2 3 4 5 6 7
2 0 2 4 6 3 '1 7 5
3. 1 3) 3 6 5 7 4 1

4:043762 51
5 :., 5 1 4 2 7 73 6

6 ;0 6 7 15 3 2 4
; 71 7 5 2 1 4 3

4,' ' ' ' , ', , , , . , , , , ' , , . , . . , - - , . ' , , ' ,, ' . ,

1 3

t~loiticn Tabl e G r G: 2*4, c at2 7

+ 04) 01 :12 03 04 05 0 f 47 10 11 12 13 14 15 16 17

I00 ,) 02 03 04 !)5 ut, 07 10 11 12 13 14 15 16 17
01 01 00 03 02 v05 04 7 0 6 11 10 13 12 15 14 17 16
.2 02 03 0 01 06) 7 04 05 12 13 11C 11 16 17 14 15
0 "3 03 2 01 00 07 06 05 04 13 12 11 10 17 16 15 14
04 04 05 06 07 0 0 01 02 03 14 15 16 17 10 11 12 13
05 05 04 07 06)1 00 03 02 15 14 17 16 11 10 13 12
6' O 07 04 05 02 03 00 1 16 17 14 15 12 13 10 11
-"07 017 06 05 04 03 02 01 00 17 16 15 14 13 12 11 10
16 10 11 12 1., 14 15 16 17 00 01 02 03 04 05 06 07
I1 iI 10 13 12 15 14 17 16 01 00 03 02 05 04 07 06
12 12 13 10 li 16 17 14 15 02 03 00 01 06 07 04 05

13 12 11 10 17 16 15 14 03) 02 01 0') 07 06 05 04
14 14 15 i 17 10 11 12 13 04 05 06 07 00 01)2 03

S15 15 14 17 16 11 10 13 12 05 04 07 06 01 0') 3 02
1,5 17 14 15 12 13 10 11 06 07 04 05 02 03 00 01

17 17 lo 15 14 13 12 11 10 07 06 05 ..4 3 02 01 00

luitiolication Table for GF 2**(4: Mod(23'

t I 00 0.1 02 C)3 04 05 06 07 10 11 12 17 14 15 lb 17

0') 00 0)0 C0)0 00 00 00 1:0 00 00 (00 0:4 00 00

0 01 02 3 04 o5 0o 07 10 11 12 13 14 15 16 17
400 02 06 10 12 14 16 03 01 07 05 13 11 17 15

0_ 00 03 06 05 14 17 12 11 13 10 15 16 07 04 Ol 02
(4 00 04 10 14 03 07 13 17 06 02 16 12 05 01 15 11

"-, C 05 12 17 07)2 15 11) 16 13 04 01 11 14 03 06
' 06 1A 12 13 15 07 01 05 03 11 17 16 10 02 04

0.-) 07 lo 11 17 10 01 06 15 12 0.3 04 02 05 14 13
: '"1) 0 10 0 13 !)6 16 05 15 14 04 1 '7 07 12 j)2 11 01

04) 11 I 010 02 13)3 12 04 15 05 14 06 17 07 16

1 1- 00 12 '7 15 16 04 Ii 03 17)5 11) 0'2 01 13 1:6 14
444 13 05 16 12 O1 17 04 07 14 02 11 15 06 10).3

14 00 14 47 05 11 16 02 12 06) 1 15 17 03 04 10

1 o0> i 1 04 ')1 14 10 05 02 17 13 06 03 16 12 07
10 00 La 17 01 15 03 02 14 11 07)6 10 04 12 13 2
- - - ' i502 11 06 04 13 01 Ib 14 03 007 05

";.-

4~°.

,4.,

-.4.,

B 4

°:.

V. -cditicn Tatie ;or CF '-*#(5 Moc45 p

S0 0 2030405 06 07 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 303 32:334 35 36 7
0 0 0M 2 0 5 04 07 1110 1312 15 14 17 1 21 20 23 22 25 24 . 26 311 3 32 3 5 34 37 3

12 0' 0001 P .704 05 12 13 I ,11 16 17 14 15 22 23 20 2126 2724 253233 3031 374 35
2 6 01 () 10 07)b 05 (14 13 11 10 17 16 15 14 23 22 21 20 27 26 25 24 33 32 3130 37 36 35 34

4 04 05 06)7 0001 02 03 14 15 16 17 10 11 12 13 24 25 26 27 20 21 22 23 34 35 36 37 30i 2 33
V5 0504)7 06 01 00 03 02 15 14 17 16 11 10 13 12 25 24 27 26 21 20 23 2235 34 37 36 I 0I,3 2
1" b07 04 05 0203 t0 Al b 17 14 15 12 13 10 11 26 27 24 25 22 23 20 21 363734 35233 30 31

,.7 07 06 1'5 04 3 2 Of0 17 16 15 14 13 12 11 10 27 26 25 24 23 22 21 2037:354:323130
S 11 12 !3 14 15 lb 17 O001 02 03 04 05 06 07 30 31 3s3 34:5: 6 :7 ' 21 22 23 24 25 26 27

I1 'I 1 . !1115 4 17 160 0 31105040706'1 3033235N3 47ZS212023222242726
:2 12 13 L0 I 11 17 14 15 1,. 0)3 001)6 07 04 05 3330 31 :6 "7'4 35 2 23 20 21 26 27 '24 25

' 2 II :171116 W4 01 02 01 00 07 06 05 4 3 32 31 30 37 36 3 342 22 21 2027 2. 5 :
14 15 lb :7 1 :! 13 04 05 06 07 00 0102 0 34 35 36 37 30 31 32 33 24 25 26 272 0 2:-: 2:

1 - . 10 1105 04 07 6601 00 0302 5 34 37 36 31 30 3, 2 25 24 27 26 212.2:
17 'b'7:4"21I3!01060704 05 02 03 00 016 37 34 35 32 3330 31 26 27 24 25 22 '0 2!

16 5 .14 1 11 10 07 06 05 04 03 02 0 10 1 7 36?5 34 332 31 30 27 26 25 2423 Z 1
- V 2 :4 5 2 7 2 :031 :2 33 34 35 36 7 0001 02 03 04 05 06 07 10 11 12 13 14 15 lb 17

'1 1 D 23 2 75 24 27 26 31 303 3 334 37 36 01 00 03 02 05 04 07 061 11 013 1 '2-15 14 17 16
22 22 2") 0 21 26 27 24 2532 333 0 31 Z6 3734 35 02 03 00 0106 07 04 05 12 13 10 l1 b5 17 14 15

23 21 " 0 7 ,65243) 2 037 36 35 34 03 02 01 0 07 06 05 04 13 12 11 0 17 16 15 14
.4 24 2 5 2 7 I2 21 22 23 .4 35 36 37 30 31 32 33 04 05 06 07 00 01 02 03 14 15 16 17 iO 11 12 13
25 'F 24 27 26 21 20 23 22 35 34 37331 30 33 32 05 04 07 06 01 00 03 02 15 14 17 It f 110 31

7 ' b23 204 2c 1 33435 3233 30 31 06 07 04 05 02 0 30001 116 7141 5 12 131 0 11
... 6.247 20 7 36 35 34 33 32 31 30 07 06 05 04 03 02 01 00 17 16 15 141 12 11 10
301, M 31 Z 233 3435 3 :7 20 21 22 23 24 25 26 27 10 11 12 13 14 15 16 1700 01 02 03 04 05)6 07

i 1 .35 ,4 37 76 21 20 2 22 25 24 27 26 11 10 13 12 15 14 17 16 010 0 03 02 05 04 07 06
72 "7. " 3 "2 70 3l 36 37 34 35 22 23 20 21 216 27 24 25 12 13 10 It16 17 14 15 02 03 O0 01 06 07 04 05

S.:7 77 "1 '6 3O; : 5 N', 2" 22 "1 20O 27 26 25 N I 1" 11 1I 0 17 16 15 14 0' 02 01 00 07 06 35 04

-:4 34 3536 3730 31 3233 24 25 26 27 20 21 222 14 15 16 17 10 11 12 13 04 05 06 07 00 01 02 03
.5 3.4 37 :6 :1130:3 2'52'4272L6 21 2023 22 1514 17 16 11101312 0504 0706 01100 3 02

36 36 37 34 35-. 3 30 31 26 27 24 25 22 23 20 2! 16 17 14 15 12 13 10 11 06 07 04 05 02 03 0001
'47 37 363. '34 3 31027262524232221 20 17 16 15 14 13 12 111 0 07 06 05 04 0 0201 l 0

V.

'C.

.C

-a, -,,.

I~~~~ c ,,:, i , ;i(S .c a,

+ 0 A u 03 04 l11 1213 14 15 1.6 17 20 21227 24 252627 ':031 32 ,3 34 Z5 37--..------------------------------------ -----
,) 0).0) ,.)0 O0 2") O0 ":0 00)0 O0V')0 J)00 0 AO 0 20 0 20 00 00 00 0 0 u ')

jOl 0 i 05 .)7 101, 121 13 1451 !6 17 20 2 122 24 52627'0'13233 : 7

JA(2A0. .. 42 .. 20 1 2 ' 426,02j :4 6050701 1.71117257212335 ,7

.' 1'17213') 33 227 2212526232D31 32 37 3 15 16 131 0 1 021 07 04
.14 0 04 10 14 20 240 34 05 Ol 15 11 25 21 31 12 16 02 06 32 36 22 26 17 13 07 03 37 33 27 23

'5 'u)S M 12 17 24 21 6 15 10 07 92 31 34 23 26 32 37 20 25 16 13 040 1 27 2235 30 03 06 11 14
6 w)614 12 36 74 242 25 23 '1 37 15 13 Ol 07 17 1! 03 05 27 21 33 35 32 34 20 20416 It

,-7)7 it 11:4 1 22 : : 3 3j2 23 ,2.4 -))6 17 10 37 30 21 2'c 03 04 15 12 92 .5 14 13 3j 631 20 27
1)"0)5 1 5 2 2222 01 7 ;7 24 34 04 14 2131 1117626 16 06 33 30

2 -3 2 12332 0 13 0I O 3121 3 04 1 26 37 AS 14 27 36 061 7 24 07 16 25 4
224.365 . 3 2 70 16 04 27:5 03 11 21 33 05 17 34 26 10 02 13 01 37 2b 14 22 30

1:2 -5 7 24 22 71 4 17 1 IS -A 01 12 27 34 10 03 362 300 163221 14 07
'1) . 2 04 25 3 15 O 17 !)3 27 3 22602 16 36 22 06 12 13 07 23 37 21 35 11 05 7404 20

:5 *i.153 72"42 ')712.52026331401 160324 1 37 22 05 10 11 04 233 6 :0 2502 17
iA.,34 -253 '3 C11 7 37 21 103 j 15 02 14 36 2c0 33, 25 0711 06 10 32 24 04 12 30 26 :1 27 053
:... ..6.11207127'1106kM 2037 13 0425 322 5 14 03 34 23 02 15)5 12 33 24

.C 2') 05 212 2 17 37 24 04 21 1' 136 16 3131 3S I0 30 0 07 27 ,)2 22 31 111 74 14 23 03 26 06
, 21)7 26 :16 '7 :4 I t33 12 22 325 04 35 14 32 202 24 0) 01 20 6 27 17 36 10 31

22 O0 22 1 02203 i2 0 v4 605 27)624 07 25 10 3211 33 12013 31 1436 137 lb 4175
23 0 2303 205 25 05 2i, !4 7 1734 12 31 32 30 13 33 10 76 15 35 16 24 07 27 422 M 21 1)2
-4 1) 2" 15 31 162703 2 05 34 10 13 37 06 22 07 23 12 36 35 11 20 04 26 02 33 71430 01 25

2' 1 253 13 0')4 1426 03 07 22 10 5 27 0230 15 1! 74 06 23 16 3301 24 2 05 7 12
'2 0052 :7722043315121271036230532 14 02 24 13 T5 20 06 '1 17 03 25 1 34 21 07 306

C+v 7 27 34 2 1 3 12 11 1,6 2 25 17 10 24 03 22 OS 31 16 042 3 17 30 3314 2) 97 532 6 21
' 5 117 32 0236 06 1 221 1104 34 31 0 14 24 26 16 03 33 o7 37 2 12 1 (201 70 O5

- 1 231 27 16 2234 05 26 17 303504 1223 20 6 070233 25 14 37 06 10 21 245 '.3

-. 0 13 5 2614 16 27 05 I1 23 Z 002 34 06 1S 2733 01 12 2) 22 10 '23 31 25 17 4 'A
-, '3 321) 2 I20 13 06 " 5 25 16 05 36 26 15 14 27 7 04 17 24 34 07 12 21 3 102 !1I ' 2 01
34 ')0 :4'1137 13 02 3633 07 06 32 04 30 31 05 23 17 16 22 14 20 21 15 10 24 25127 ! 12 26

:5 00 :5 37 02 33 O6 04 :1 23 16 14 21 10 25 27 12 03 36340130 05 07 32 20 15 !7 22 12 24 !
06 036 31 07 27 11 16 20 13 25 22 14 34 02 05 33 26 10 17 21 01 37 30 06 25 03 04 32 !2 24 23 5

7):03 3 042 3 14 10 0334 30 07 20 17 13 24 06 31 35 02 25 12 162 1 05 32 36 ;1 211 ' 1522

F.:v ."-" ," "." " v v -" "-"-',,." , •". .. "

6I
Appendix C

Selected tables of Vandermonde rnatric,±s

r a - . . .t r md I

4-.-[

!1 4 7

1 4 1

-rr n.e 4 .m o d 2

4 1 03 06 14 05 2 07 6 17 15 1 I

• 1 4 2 17 0 1 0 1

b I17 3 5 4

) 5 7 l) ̂ 4 6 2 15 041 1 0 1 6 1

"anerzrnde Matri for SF 2** 4) nod 13 isI

S11 6 0 01 06 1 1 0 1 Ob 0 7 1

17'4 0 1 2 5 0 14 7 1 0 120 1) 14 17 16 1) 1

S14 1 17 10 7 0 4 12
.56 412 - 4 7 15 14 1

.1 :1 06 07 00 0v 0I7 14 00 0 6' 00 1 7 01
:1 7) 1 ; .1 1 1 I C 07 01 01 "1 01 01

16 10 13 06 17 4015 2) 07 24 17 1 5 7

. ._ ..4 i: 05 07 170 I ':4 0 o ! o6 15 12 16 15 01

., 1 4 1 0 17 0 1 1 14 171 01 17 14 12 17 01

.' . ' 001 067 07 01 4)6 07 01 067 07 01 06 10 01
9 ' 3 " I? 07 14 17 10 12 01 14 17 5 1') 12 '.4

.I 1 1 4 10 06 17 01 i 10 07 0 1 '7 02 14 01

415 !6 - 0 6 10) 11 o- 7 05 14 67 04 0)1

f 1 1 0 . 12 05 17 14 06 03 10 02 1) 1

.

-' 44 7 U6 0 4 :6 1 0, % 4

1.1

- . - - . - - , --.- _, - . . .-.,. .-. . . . - ...-,

" "". 3) 0 1 .It 01 v01 01 01 1 1'1 0 1 1 '1 01 0 1 J ')! 1 :) 1 01 (1 , 01 'i ' > ,)Cl ,. 1 . 1

1 ' 4 ' 0 0 512 24 15 "'2 7 16-4 527 2 4' 6 14 3'2 2 5 "17 -621 Z 26 1:,1) 12 151 16 75. 0: '' '" 14 5 7 2 5 :4 7 27 JO 1Z 1 ,'
-42 16 2 1625 330314 5 3621252 .2: 1K 05243207 3427231)630 1731 1:

.167 33.0 6 2 055 07 223 14 1727 1102 20 24 21 3433 , 25 31 26
1 Z 16 33 14 3C26 02 05 2 34 23 30 31 11 04 12 21 15 035' 27 22 10 24 07 7 6 17 1301

' ' 37 14 31 222) 32 35 06 :6 1 110 5 3 4 03 17 26 04 24 16 23 25 12 02 12 07 33 30 27 01
2 1. 03 2 7 1711 21 33 5 26 10 32 37 20 17 J4 15 5 14 27 02 234 06 31 1
-4 . ,," '5 ,7 ! 5 ' 25 1) 05 1, 0 6 27 ,3432 17 22 12 34 14 13 0212 36:

12: 421'. 7 7 20 16 14 26 0 5 4 7,) 11 1235 252 2 24 37 .7
2 ,7 1. ,. , . 7260)7 14 11 Z433 31 10 2 20 34 2501

A 717 6, 1 . 224 2" '21 3 27 05 37 120 35 6 10 34 17 64 25A. 2 7 t ') "
,4 _. ' .= .'. '. . 2 15 06? - z ; , 'O. 1 35: 31 05 33.,. 12' 24 31 ' 9) 1 ... 3 4 V,

_ 7 ' I J. 2.4'Q 33 26 32 20 0 "5 ,.,"A .

, 2-5 i 22I ' 31 2414 .427 7621 17 A5
30 4 * 0 u I7 4 :4 272 17 124'

- 3' 24> 7. 5; Z9000 142 " " -I
, ! _ '. a _ . .. L. '. : : c -~i , 2 ,' .' 5 1 " ' "II ,'. ,, . 2

7 1 -7 44'C~ 1 1 '

-4" 4 t. 12 6 'S,7 :1 .- 10 30 i5 27

. 4 "7 -T 7 . 722" 1 14 15 123 7 10 25 21 11 23 1)5 '6
," ' 2 i ". 117 16 v2 70 21 2 ' !)6 ' 26125 12 4

A ,7 '4 7.. I! 120 37 035 17 4 12 13 2'24 03 15 11 6 2 141 10,
." 4,,...---...--.1' 324 1 14)7 04 36 37 2b 062102 1775 051 . -,2

2:5:5 " 4 2f 14 013 07 1I 27)3 21 14 312 '2 036 331 Z 1
" " . - 2 1.. .' '14 ".4 - 17 !. 3 A'2 27 06 16)5 11 2 5 37 11,. 31 0 j 0" 07 20 28 N0 "5 24 J)

I. 1 . 74 24 C' 2 ?. 4 14 : ,,4 7'" 17
17 4:3'33 10 26 25 33 21 20 11 17 23) 7 05 2) 36 03 16 12 1I

'1 ' . 07 -2'2 13 " i 4 4 26 17 o3 34 1 10 11 36 06 352 20 22 31 14 3721 05,1
7 7 07.1) 27 2 35 21 12') 04 131 ".0 233 4 32 05 02 26 26 14 33 Id 15 20 1
I 31,c, = 6 334 014'' 11 27 17 14 23 35 07 1 5 04 ',.2 173 0 03 37 16 32 12 10 01

. 1 173) 06 2 37 74 1 72 24 05 10 i32 22 26 27 36 25 14 3Z " 5 16 21 15 12 20 04
li22a1261227.6 :72 " 14003233337334 16 07-21 32 15 24 12 05 20 10 04 02 01

.3

A,

o'4

Appendix D

Tables of ENF (encode normal forms) produced by

cold precoinputations

b22

D)2

S--F

- 11 1111 i

F I I 2 *

3 5 2, 5 1) 1 U
4 3 15 0)

6)

Mi Ma t r i for G F -" * 4) :o _

0 10 Q 10) 1 "1 0 1 0 1 01 l 0) 1 01
- , 2 c 1. 15 13 07 14 1 0 04 12 05 10 1 i 0

4 i0 15 14 04 11 15 04 01 10 0 5 11 0S 10 00
07 i1 *: '3 17 ,)7 13 12 C,3 C)5 12 01 00 I 0 ,)

-5.,7 1 14 02 04 II 14 12 10 04 01 00 00 0') 00

1) 1 f 5 03 11l) 1 0 ') (I 1 0) '.) 0 U) P.
6 !5 04) 04 11 :1 00 00 00 00 0 0

'72 17 15 14 01 0 00 *h) 0)) O0 00 O0
S '4 14 j ')7 t' 00 00 ,L' 00 00 I0 I0) 00
" '- - 2 i) 4 ,: Cl 00 0)) 00 O 0 Q0

-..' 0) 0 0 0 0 l) U ci00 9') i0 C' 0 1')

) ' 1) CC "I , ') (') O 1) o f)0 0o)
.- :, ') 0; il '0 0)') 0 c : 0,) 0)0 001 00 00))0

.:

Jo,.

1:I :1 'A I ' '') i1 ;1¢) '1.1 ')1u1 '1 :1 ',: . l Mo1'i 0, : " 1 O] ./:, 0 1 0!01 : 0O! a)

0 .A)1 7 25 D 7 11 7 714 2 2 1 O
t)7 'L,) 75 !.b I'7' 11 2530 1 5 :4 3 A '6 7 224 7' 224 3) 1 135 16 32 0100 A,

13312 1: 7 7 31 36 : .1 23 1 1 . :" 3 0 6 04 ,)3 32 35 14 01! 00
21:1 3! 2 10 v4 2 1 4 21 15 2 5 c. 5 !b 2" .1 :6 2 0 1 : 4 1. .b 03 11 07 01 00 00 .00

4 7 61 , t' 2O24 1. 6 41) 21 627 2 .'1 7 10 50') 10 '4 .,-N 320 '1 : 01 0 00 'A0. 0
; 1 0 3 2 '3 K 0 -4 1) " 7 . 13 02 1o v 03 34 ."5 1b VT 15 03 24 v6 24 11 01 O0 0 0 0 00 0O
: 28 " .3 1 :3 .: 04 .. 6' :0 33 11 3 07 17 12 2 31 35 01 11 '. 270100 0000 000000

-,n ,. , - 17 ,,5 23 1 5 i 16 73 11,31 16 10 22 31 1 3')1 0000 0 00 0 00) 0
I:435 t I N' " .. 3 '24 2 '1 36 17 35 2 :6 11 4 15) .) 0 0 0 0 C0 0 (0 C.0 0

' .. .L 2. : i 5 '0 ! 36 J 6 17 11 4 0734 2111 '26501 0 0 0 0 C 00 00 0 0 0
4' 7 5'' " 7 2o o!)

_. C, I . 21 . . 1). .. : ., V) 90 ,G I
..:, N .11 ., .. 0 ' ,. 0) 00)' '0 0 .)0 0 0 0 f)

.. . 'j) 4 'I' 0 j
. . if - -. , A . 1 - * . O 1) 0 (10 0 <fC) :)0 :0 O0 0 0 0 t00

2.,-: '- 16 " .j 2 v '1 , 1 " 10 71)) 1 ' ') 000 .)0 00 0 0 ,00 000 00 00
.. ..00 0') 00 90 003:0 0 0 0 00 00)00 00 00

- : 27 r: Il.) 0". 00 O O 0 0 : !) *) 0 00)'): , 0 I')

D . - 0 .4 ,6 2 0 1) ; .) ") 1 00 ' 0) .) 0a 0 0 000 0 00,00

j (f) I)ij)(j f:;l 0'' 00 o '" 0 ot) i'o ,)o' 00)) 0 1) 0 000 0 00)00 0

S1 14 f 6 ' ' 0 .0 .' . . . 1, 1) 0) 0 O0 O 10 C) 00 , O'00 0 O0 o ,0 00 0000
1 ' 0 C-0. o: ,)0 1 0 0 0 (; :1) .0 0'0 00) 0 o0 0,)0 0 00)0 0 000 00) 0000a 2! , 2 1 ' 2 oo coi ,,:, o .)0 O0 ' O 0 :0 :0 900 0)0010 0 O0 0 0 0 0 0 04

71 '? 22 ' 02 O . .725 :)O 9:j .3 ': JO 0 :):00 : 00 ,X 000 0 0 0O00)0 0 0 2) O00 04

2 6 .) .) '0 0'0 1) 0 0) 0) 00 00 O0 00 O 0 00 00 0 0 00 ")0 00 0)00 0 00 00 0

-10 12 35 1 ':l no 0000 '),0 '0 '0 00)0 00 0 0 000:) 00 9O 01) Of) 000 0 000 0
17100) 6 0)10.0))09 !;0 0 ' 0000 000 4)0 000000 0O00 0 0000000 00000)000
33' 0211 Ol .0'u oc c: , ' 0 1))0) " 3' co" cO ('0 0 0')c 1)440 O 0 0 4)0 0 0 O0 0 00 0 0 (0 0 ;

S" ' , ,#.,,... W" " ."" ."-'-.. . . ." - . -. " - , . / .' -"-•- . -. --.. .- -. -". ' " - .. - • "

-V. , i d , . .:,.. .',,:.. ' - ' ' -' -" ' ' 7 " ' . ' , " ' '" '._ . ". ' ' . ' " . " " . '' .' . "' .

Appendix E

Examples of the encode/decode process

A%*

E2

C ,- one -. an Cj E,.bar-ct Cd .,> a blAnk,
he

. ± C- 05 e - l o e a :,IW:a mal anber _t -e
U I - - k E' . E SII-. I C td e t. l a- I n ibe? r

.a: m--t to-, n umber o cha.innel s to beE- r-t
1: he rr-ansm ttx nq node. Thiz5 should be a

"""'" ~ c. e3 'c i mTIa I r.. t{,. b e r.
*-. . .. ,: nlum er

r 1:.ae enter the number of channels active at

t-' rcaiwers nde. this should be a decimal number.

,rh.t'-e..

.,"-... :'.tjw'C-' 0' te- * F 2m ne I ±., ando< sen + .r td0:5 .F

'''..r c o u h e b n-' ci

ta rec-eivin node. These numbers sh-uld be decimal.
4 5 ,5 7 a 9 1!,'

.'oer .-.,atr 1 .cr the active channels listed above i.:

"-S ', ')i 14 C:,2 C)7 1 10 ")4 01 04
i <"::' c ':. i c:! < ' ' .' Q I, (i,) (p1::

f %C, I.

. , ' u u0 'U '? ,1 (-)1 OJ 1(1) 00 a 0 au 0

" C)) . C 0C() C1 CI C) : C)k k 1 i CO,

--,,, s:l o _n I-r on) one I ine and separated b, bl anks,

t4 the ,data rec-e wed otri each of the channels active at
% n-1, e mcci -'e veins node. The data should be in the form

oct al nmt.mbers, and should be entered in order of

roh _nne n Lt .-r i number.
12 14 15 L6 i7 07 14

-e 3 trar-,n tter clearte.t words were

.. f'ier-, e r ,-ed in i inanneI orci r)

t 11 12 17 14 15 tn 17
do you want to decode another a words?
(type y or n).
n
Please enter, on one line and separated by a blank,
the f ield-base and modulus to be used. The
field-base should be a decimal nunber and the
modul Us should be a-.n octal number.

%J% 4

Flease enter thu -nurber of channels to be sert
a v the tranzmi tti og -,1n Je. Thi '. , sr'o d b.=

r , _,Jd eri m:. I Y,_ r -er.

plee, ~e ci ter ,che nu_,mber ..:+ charne] .a act t .? t+ 9

%, , ...*.*

F" 3

-'" l ! U [1< 1 7 ib 04 1 5 11 1: ! ')
71 r

.leise enter on n 1 ine and separated b' blanks,Ie numbers c.+ tne channe s active
- t t e recI v i c, ode. Tnese numbers shoul d be decimal.

.-. .,2 1 4 .5 ,":7 ? l

'" -oder qatni f or the acti ve channels lI sted above -is:

.-%

0
"
' 92 . U") U 01 1i 12
C,>O i 00 1,1' J '¢ 00 C: 0 C 0

I B ."1 , 1 * I , O0 110 ':I I 00 t) 0 II) ('

.4% .4.

''1a ;Z.r- b 1 k

, .e crnler. nle 1f2 ad _n:rtsd b. bij nnk.,_ N.Ca~~a .- ::e .:.J o a c -f the ch..-n-nel -.- -9: i'- at

- r -l-iZ1 *'r- - ,Q. i 1re d:AL 2-. iC ,J b - 10 th?, for
:al nu mbes, and -houl d be eFle-u in crier of

12 1 15 16 17 ('7 14

3 t r- n' , i tt-d Ilertst word(sz wer e
1. ,- al nLtbl3ers e;,pressed i n channel order

'17

II 12 1 14 15 16 17
, - 'ou want to decode another 8 words?

cv v r nj

['45

.

''t

4-.....: . -, . . . ; ; - . . - - ,; :.:¢ - - _

,. ' , .'.°- + .- •-.

j,1 .

- ease ,n c _ ori, 1 1 ne Cnd m prated d F e b an.
t fe i el -- 'ae and ind U UlS t) De Used. The
Ji eI d--ce EIul b ce a ceci nel number brd the
.Tc.dl_. 5a hould be aen octal n _ber.

Fl .e enter the number Q'f channel be sent
by the tranSt it Lnq node. This t ohuI2 oe a
:deczi iri -a Inrber .

--lease enter the number o+ channels active at

:-e ree,.er node; this so'l be a decimal nu mber.

"F . . t r 3 -DUt -if
r_,- re . .. er G F 2 . inod 2 i5:

1 9,, I 17 1: I 4 1 1 i1 13 ()2
"' 1 !4 '2 . :.~ !.' ,4 ' - C'4

. -rr., _; cn-- li e r. d aepaeated by blanks,
-:rnfln, . 3 a~nti : e

t r ;e rc . e : ,I node. These i umbers shoul d be decimal.
2 3 4 '5 . 7 :- 3 IC;:

Secoder -atri or the active ch annel.= listed above is:

. 1 . C4 , :) C) .- I

1k. . - 1 -, : ()) .) (. _ C,10. 4 , ,_... , ' . , } 0 1 UU 00 Q Q(.iC'

:ese e: r, ,-, on e In a nd separated b, blanks
Th-e ,7atea r ec kd on each of the channels active at
t ie rec 2 . er' =e,t7? . The data should be in the form
cf octal .taLers, and shcl d be en cered in order CT

i nrl e- -lst 4 i, a _lne nmber.
11 12 1 - .7 1 Ji 16 17 14

h I-' tr -AI-!iJLed ciarte:<t wofrd were
* I..i.. ~ L.. .. ci IFL~je order):

O14) 11 12 - 14 15 1. 17
do you want to decode another G words?
(type y or n.

Flease enter, on one line and separated bv a blank,
the field-base and modulus to be used. The
iield-base should be a decimal number and the
,nodulus should be an octal number.

Please enter the number of channels to be sent
!y the tran:Sf1 ttinq noje. This should be a
decimel nmber.
10)

olea _e erter '--,e ri,_LTclur c-f cr'nFI [&ct e a
the -e-:.i.'era node,: . -. Should ,. a C-?: 1,-aal n,.-,,nber.

".,..."

*.+ + '':- 7- 77-- -4 " -- -F- - . - .- . -' - - - - ' - - -- -' o - - -- -
°

.. P-- --

"- eJ5

I t. 110 1 17 16 04 15 ii 1.
C.1 C 4

p- e.se entcer on -ne line an eparated Dv olanks,
- -- , '-4- -h -.-) - t-

- D r e E I s (n .thre nan.JBra .o the P .zhar nels .acti./e |

t a the recei ,,a n r-.de. These numers should be deci ma.l.
" 1 7$ 4 6 7 C3

Decoder matrix for the active channels listed above is:

, :> 1 0c') ,...1' ,)) o(,., U0 00 (01
c"0 1f '.9((9 U 0 (O 0 '0 00(U 9) U

C- , C0 '" -) 'C
• I._Q

C1 15)C '1 C) C) -iCC k) 12

, a" i 1 , C1. s I -I Q

.- r .n one ., ae nd - "."ted by b!.:an's
r c h -

i- I 4, 2. Zk S_ 1 Q I .I-I n t -.; 71 D F,

1, 7.' 1 ! 1 1+ _ b +7 14-

;:r:9~ ~ ~~ ~~~c t7 t-,",-Jm ot-a. t" Cati.twr_ were

. e e r e- E d n chn ne I o'rder"..-

' !i 1,2 13 24 15 16 14

ou want o de-ode another 8 words?
.J c,.i-''. y'u w r t -o de, .i

v: or,.

Pie:= enter, on one 1 ine and separ ated by a blank,
1- ield-rLase and modulus to be used. The

ield-b ee shou2 d be a decimal number and the
,-PdLLI= -should b.= an octal number.4

i-'ease en ter the number of channels to be sent
o-. the trancmittinq node. This should be a
decimal fIUb er.

,:nc. rer'ei ers node; tnis =hould b: :a -deci mal number.

DNF matri'I; +,cr 3 out Of I .)
,:nannels over F '** (4, mod 2* is:

l 00 1 1 17 16 04 15 11 1 I
1O 1 i4 2 7 1 it' 04 1 c4

please enter, on one line and separateo by blanks,

the numbers of the 8 channels active
at the receiving noce. Thiese nLbers should be decimal.

Decoder matri;, +cc. th active channels listed above is:

Of.' O0 (,Q' '(1) 0a' ' c QQ .

4, I)' *S) 1 '9(Q(. 19(9 9tl ccq' ', C'':' (5 (u

';4- """" ,...:-- .-..-, :.>-v "..',"" "" -"".: " '" """' "-' "' -> -"•"" -: I:

-' -

; ') C C C) C)) C) CC

e enri i --r -n e 1 ne and -Ara ted by b1 .nks,
t- J -Ata recie, on each o+ t-e channels active at

rec-i,er4 -oe. The datA shoild be in the +orn
T ,-rtai ,--es, ad Eh0L(1 -I be ent:ered in order o0

t r- eatz nq ,zh i- rel n ui er
,i l - i- 14 15 i1, 17

-e tr-ansnitted clea.rte< t word's were
Scctal n'f lber-5 e;pressed in channel order):

.ii 12 i 4 15 16 17

S..,:L_, .n- n ecode another 8 .. ords?
C r -. '

4*%

.4

,a.

4,

•.
"- . ,.-.-.ac :.,.: -. :v v -. :-. , . . -.......-. . . .- a--<- .. .- - .---.-..- :-.:-.. ...-

please. enter, on lrc line and serarateo :,y lanks,
the i.el.d-base, ioaulus, numoer of channels to be sent,
alio number oi cnannels to be received. The modulus
-houlo oe an :t1number; all otner numtbers shaula
ne decimal.

'-S.

it 1) 7

-- ,ank you .. please wait

.NF MATRIX--------------------

- 17 14 ('7 5 (02 11 06 13 17 16 17 51

) 2 10 14 , " ,1 14 15 14 ()1 07 14 10 02
1 o6 15 1 '2 i2 16 16 12 0 2 10 15 0)6 :1
1)1 16 14 06 14 07 06 07 14 C 14 16 01 I0
1 e 15)4 03 .2 15 15 02 03 (.4 15 01 00 "0
1 13 11 17 04 07 C4 17 1 7-11 1.) 0 O0 0)
1 5 15 157 0 15 07).' .'4) .)

14 4 f 1.4 01 63 O0 0 00 t)o

1 .' 01 !2 i:01 11 01 00 00 00 00 00 00
1' -3 I0 7 I 01 00 00 00 O) 00 00 00

-1 04 05 C"5 04 01 00 00 00 00 00 00 00 00
12 11 12 01 00 '0 00 00 00 00 00 00 00

I () 5 01 0O0) 0 1O0 O0 0 00 0 00 00 00 00
01 1") 001 0 O0 00 00 00 00 00 00 00 00 00
0I Ol 00 O) 00 00 O0 00 00 00 00 00 00 00
1'O 0 00 00)0 00 00 0 00 00 0) 00 00 00

.91

a?

-'0

#6l

5/

_ . . .,

K8

14X 04 11 O

5 7 .2 17 5 14 1 Q0)

- **~~ 14 12 14 0 1 17 Ci0 4

17 lu o 4 1O 1i K0 00 o0
i) 7 t' 1)1 l 0 0 0 0 0 1) 0 0)
1 0 m I 04)) 00 0) 0 0 00

'.4

,I

J4 .

=

,- """. .p..- . , . , --- ,. , , "''" """""'''*"''" ", . ,"x ,"". 2" "-".<"- , . . - ''' ,. '

ENCODE rEY ----------------------

,6 1 0i 5 ,) 0 0)) 00 O0 00 00 01
i1 04 16 00 00 C) 000 00 01) 0

15 11 00 00 00 00 01 00 0)
1) 97 00 f0 I00l 0 O0 O0

' ii 0o:O 0,) O:' 0 ') 00 00 O0
S 5 .7 O 10 1 0 40 ())0 1)0

07 1) 01 0 00 0 o)0 00

:4

*%

k-<

;lease enter, on one line, in octal and serarated
r' oIan s, tne aalues to oe tran smitted over the

r tranisi tters 3 channels

•*oros trz-nmTitted are (in channel orderi:
, *)l '.- i4 " 3 06 14 13 05

:o 'Oi wan to sero anotrner 3 worcs
.ype y or n)

'1ease enter, or one line, in octal and separated
ti blanks , the values to be transmitted over the
t arsmitters crannels

45
.erds transmit.ed are tin channel order?:

,4 5 71 :7:. 17 (5 1

:u i t to send another 3 words?

z e or, Fr D n e line, in octal and i eparated
o' z- n,' h -e sto oE zransmitteo over the

" . ISTI tt P o hannels

• transaittea are in channel order):
: 7 14 06 1 1 t2 14 11 15

z; vou want to send another : words?
tpe y ,Lr n

Dlease enter, on one line, in octal and separated
o, blan,-, the /ales to e transmitted over the

i.ansitters channels
M1 2 i:

oras transmitted are kin channel oroer :

Jo ou want to send another 3 words?

'toe '/ or n)

Iease enter, or one line, in octal and separated
t b .n' s, I ' --lues to be transmitted over the

transmitters 3 cran neis
' 4 15

.words transmitted are (in channel order):
', 1 6 O 04 1 2 00 0 7 11

io you want to send another 3 words ?

toe y or n)

please enter, on one line, in octal and separated
by blanks, the values to de transmitted over the

transmitters 3 crannels
17 10 4
words transmitted are .in crannei order.:
17 1))4 15 0 0 . 14 12

Jo you want tD send ,notnE, qjras'
" /pe v 3*..

07 .° .' -7 . 7: 7'--- " '7 7-S "- -. "- -- -' . . - -,- -

.-e enter, on one line and separated by blanks,
i:'e field-base, modulus, nu.mnber of channels to be sent,

.-:o number of chnnnels to be received. The modulus
.. er.s d be an octal number; all other numbers should

S ee iial.

27 !0 5

_-..- o you...please wait

* T T ---- --- - - -- I
-4,

. 14 07 15 ,5 2 11 C! 6 13 17 16 17 03
d21,, ': 4 0 :1" 14 15 14 0 1 07 14 lo 02

- :5)2 12 16 16 12 2 10C 15 06 01
' -, - 4)b 14 ') .)7 14 uo 4 16 ¢. ¢

- .. u2 i[- , ,3 .4 i 0f 00 00(

.1 ~~C :::i)0c
.! 7- 5 .- -; 27 i 1 '! o ,
14 64 5 !4 f 4 i4 0 1 10 00 00 00 00
.1. .i ') 12 12 ni 11 01 0 0 0 Do') O 0) 0

i.1 .') 01)-, o : o 0 0 0 0
4 .15 ' 4 ')1 1)) 0 0 ,")

" -1) .. 1 2 "' (' '"')) f)) o0 Q0 ,)))00I O0..... o..... (, uO o ') 00

I 1 C) 0o 0 00 00 00 O00 0
1 I 0 00 1)) 0)) o0 I) 00 00 O 0 00

(' ,) 1 ,0 0) O0 0 0 00 0))0 00 00 00

." °

' 41 '

,4".

[-

4%,

- . . . - : -

RD-Ri42 83 HLIGH SPEED LOW-COST WRYS TO GET MESSAGES FROM A SENDER 2/2
TO A RECEIVER WHEN.. (U) YLYK LTD ANN RRBOR MI

BLAKLEY 28 MAY 84 YLYK/RFOSRiSBIRI/83-84/@0i
UNCLASSIFIED AFOSR-TR-84-0528 F49620-83-C-O iO F/G 17/2.1 NLmmmmommommols
llEEllEEEEEEEE
EIEEEEEEEEEEEEEEEEEEEEEEE-IIBIdflfl3

iI I

111 1.0 'ill 8

-- W 6

liii.
la. 11=

II 1.25 _1M~ .6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

E12

SUBMATRIX -

02 14 16 06 15 04 03 04 11 ,1
11 15 16 07 02 17 15 14 01 CO
06 14 12 14 03 11 07 01 00 00
13 01 02 06 04 13 01 00 00 00
17 07 10 14 15 01 00 00 00 00

5,,

S.

5'i

... 4 ftft E13

ENCODE KEY -----------------------

)K7 06 03 17 10 00 00 00 00 01
1iC 16 15 15 07 00 00 00 01 0)
05 I6 06 16 02 00 00 01 00 00
1) 05 05 13 02 00 01 00 00 00
1.7 07 10 14 15 01 00 00 00 00

4

'I' -, - :," , .- % , .. ',' \ ,'.-,- ,--'.% , - . - . .,,' ..-.. -.. -.. ..-. ..

E14

please enter, on one line, in octal and separated
oy blanks, the values to be transmitted over the
transmitters 5 channels
01234
words transmitted are (in channel order):
00 01 02 03 04 02 11 13 14 04

do you want to send another 5 words?
(type y or n)

please enter, on one line, in octal and separated
by blanks, the values to be transmitted over the
transmitters 5 channels
5 6 7 10 11
words transmitted are (in channel order):
05 06 07 10 11 17 !5 11 01 04

do you want to send another 5 words?
(type Y 3r n)

olease enter, on one line, in octal and separated
* y blanks, the values to be transmitted over the

transmitters 5 channels
-2 13 14 15 16
words transmitted are (in channel order):
12 13 14 15 16 13 16 07 06 13

N! do you want to send another 5 words?
(type y or n)

please enter, on one line, in octal and separated
• " by blanks, the values to be transmitted over the

A ! transmitters 5 channels
17 10 4 14 0
words transmitted are (in channel order):
17 10 04 14 00 16 05 00 12 03

co you want to send another 5 words?
(type y or n)
n

IR

-I.

"* " , , * "" ', "°- &.:f.'b%%""'.(- " %%A%~..

.% 7-v. '-p , - -

E15

Please enter, on one line and separated by blanks,
the fielo-base, modulus, number of channels to be sent,
and number of channels to be received. The modulus
should be an octal number; all other numbers should
be decimal.

4 23 10 8

thank you.. .please wait

ENF MATRIX --------------------

01 17 14 07 15 05 02 11 06 13 17 16 17 03
01 02 10 14 07 01 14 15 14 01 07 14 10 02
.11 06 15 10 02 12 16 Ib 12 02 10 15 06 01
01 16 14 06 14 07 06 07 14 06 14 16 01 00
01 15 04 03 02 15 15 02 03 04 15 01 00 00
01 13 11 17 04 03 04 17 11 13 01 00 00 00
01 07 15 03 11 11 03 15 07 01 00 00 00 00
01 14 04 15 14 15 04 14 01 00 00 00 00 00
01 11 01 12 12 01 11 01 00 00 00 00 00 00
01 03 10 03 10 03 01 00 00 00 00 0 0 00
01 04 05 05 04 01 00 00 00 00 00 00 00 00
01 12 11 12 01 00 00 00 0 0 00 00 00 00
(1 05 05 01 00 00 00 0 0 00 0 00 00 00
01 10 01 0000 00 00000000 00 0000 00
01 01 00 00 00 00 00 00 00 00 00 00 00 00
01 00 00 00 00 00 00 00 00 00 00 00 00 00

olO 0O 0 oO oO O 0O 0O

A P|

El6

.6BMATR IX -------------- ---------

02 14 lb R.h 15 04 03 04 It Ol
11, 15 16 07 02 17 1! 14 01 0.

%U,

4,5. . " , • . " -" - " . " . . ' '- - , , . '. , ., '"% ,w ., " , 2r

E17

ENCODE KE --------------------

17 03 11 14 14 12 14 02 00 ol
11 15 16 07 02 17 15 14 01 00

I~i

4

- V3 r W. a * ,Z,,* ,f 'e ,',,..f .. ,,-..-. ... ,, ".."-*~ . • - .. " ."- ". ". '. -. .'.a". -.

W, El8

please enter, on one line, in octal and separated
by blanks, the values to be transmitted over the

transmitters 8 channels

0 1234567
Hords transmitted are (in channel order):

00 01 02 03 04 05 06 07 17 04

do you want to send another 8 words?

'type y or n)
Y4

please enter, on one line, in octal and separated

by blanks, the values to be transmitted over the

:ransmitters 8 channels

I) 11 12 13 14 15 16 17
iords transmitted are (in channel order):
1' 11 12 13 14 15 16 17 07 14

do you want to send another 8 words?

(type y or n)

S.

.5

El9

Please- enter, on one line and separated by a blank,
the +ield-base and modulus to be used. The
field-base should be a decimal number and the
modulus should be an octal number.
4 2
Please enter trie .number of channels to be sent
by the translitting node. This should be a
decimal numner.

please enter the number of channels active at
the receivers node; this should be a decimal number.

N i, NF &tri;' +or 7 out of 0 C'

,:r ranneI over GF 2**(4' mod 2 is:

-1) _ .IC))C) '0 00 'C. 14 05 1C
: ~ ~C*' u uI00 04 12 17

. . . i 10 17 (6
. (. 0 1 @ '' -0 '5 12 16

, 0 z ' @0' o1' 1 1 0(c) 11 16 C6
2 0 0C 4) 00 00 00 01 C5 17 17

Please enter, on one line and separated by blanks,
. rthe numbers of the 3 channels active

at the receiving node. These numbers should be decimal.
156
Decoder matrix for the active channels listed above is:

Of 00 00 O 0) oo) 0o 00 O 00)
10 01 0 0') 00 05 oO 0 14 00 00
16 00 01 06 1-_. 00 0 04 00 00

please enter, on one line and separated by blanks,
the data received on each of the channels active at
the receivers node. The data should be in the form
of octal numbers, and should be entered in order of
increasing channel number.
6 6 14

the 3 transmitted cleartext words were
.,octal ,Wum~ers e.pressed it-, channel order):

06 0 7 10
do you want to decode another 3 words?
(type y or n).

to
olease enter, on one line and separated by blanks,
the data received on each of the channels active at

the "receivers node. The data should be in the form
of octal numbers, and should be entered in order of
increasing channel number.
317 5

the 3 transmitted cleartext words were
(octal numbers expressed in channel order):

03 04 05
do you want to decode ancther 3 words?

' --..o .o *-, **.... .% '-.** .*v'%4.**'*'%,*... .. .'%" *o*-*' ' %"*.*** ' ".7." 0 '% -... % ,-- '>" "." '

lease enter, or one 1 ine and ear-t b, a bank
,e teld-base and mLCIulus t.- De u'.. The
-. ield-base should ie a decimiial rLUITIOer arid ti-.

1 4, _,dulus should be An actal number.
S -CC enter the numoer of ch,-arnels to be sent

:thie tr-ansTittirn g node. This should ne a

S . n o ri b er.

.' - enter the nU.m. zr o :hannels .,C ve at
.,_ r eC, ,tirs I7, ; Li- 1 should be a decima l number.

mar~r(-cr-- GUt 0f U

%--5

:-:.: ; '- _-...r G .2* (,41, ,rod 23 is:

,:%,

:_.:;.:0 :'0 1 00 1 7 " 05 !6 !,, , - 0 C 1:4 -6 06 1

. " ' , _ , '- -ne I i I-, *' 1 d se Par ,ta .d L- b I .n s..S
-,: lIu uerB , !h-. :5 W ni- rels active

the receiving norie. These numbers should be decimal.

eccder matrix for the active channels listed above is:

':; 0 0 , 10 5 14 12 -:, 10t

"i .w 00 00 14 14 13 0:3 11
. 16 02 f0.5

':.. u 01 0 10 14 05 13 13
I- . 01 (4 13 (06 16 06

" ae enter, on one line and separated by blanks,
data received on each of the channels active at

--. e receivers node. The data should be in the form
.F octal numbers, and should be entered in order of
. .:,'easing channel number.

. C,7 06 13

:e 5 transmitted cleartext words ere
.tal numbers e.ressed in channel order):

1- 14 15 16
Lt it L to _.,e =ntrer 5 words-

: i or I- .

'-lease enter, on one line and separated by a blank,
rr-.e f ield-base and modulus to be used. The

-i,-ld-base should be a decimal number and the
.r.-Llus should be an octal number.

-e_ase enter the number of channels to be sent
the transmitting node. This should be a

_19etimal number.

uci.Ase enter the number of channels active at
the receivers node: this should be a decimal number.

r!F matriv for a out of 10
:r,nels over GF 2**(4) mod 2 is:*: ... ~. ., ~ . .-, rr,:'% ',; , *sb*.,% ,. V *% ',, >.' v . ..,... * . ' .' ',':-';7 "- ..- -..<.: ' ,. '. : ,....2. . s . f.a ':

77 .7177 R. 11.7

.. ~ E217 ,1 00 11 17 16 0'4 15 11 13 02

" C l 14 0 2 07 4'1 1C- 04 1f 04

ease enter, Dn one line and separated by blanks,

numbers of the 8 channels active
the receivinq node. These numbers should be decimal.

2 4 6 7 !3 10i
7,:oder matri;. or the active channels listed above is:

: 0 CC C'C) 00 C, (,) ,(--) C,, ,

. 1 ,- 0'' ,- (') 0 ",) ' Cy 0 0

-~~~ :icii 'C7 QC 12
*. J,,', .1 00 , , c) C C) 0C 00

enter. on one line and separated by blank.s,
dita received on each of the channels active at
- ,-eivers node. The data should be in the form

_ a numbers, and should be entered in order of
..........si n channel number.

12 13 15 16 17 14

9 transmitted clearte't words were

: L numbers e:,pressed in channel order):

I: t L 12 13 14 15 16 17

,-L -_ant to decode another 8 words"
*e cr n) .

-'.,

,5.\ : , ,,,..,' .L-...' .< 4 ." " .-. "-" , ,,"."•".".". " ' " ,". .v.",% ." -".." "" .

Appendix F

Copy of Yeh/Reed/Truong paper

on systolic multipliers for finite fields

!4.-,0

Systolic Multipliers for Finite Fields GF(2')
C. -S. N EI11, SltIDI\sMI WR . ItI i. I RVING S. R[EFI. 111(\ I U .lI[I, Si) I.K.s TRI. (NG ,iisim ui i

tIstrut-l 'T%%o 5%st~ltfi architectures are deicloped for per- is, dei is c for multiplication inl (;F(2').]his aleorithill is
i -Iiing the product -suin computation AIB + C in the finite field mapped Into thle hardware design in Sections III and I V.
(,/ 2'I of 2' telements, sihervA., B. and C are arbitrary elements I eto i n-iesoa ytlcmlile o
.j 1 (-i. Tlhe first multiplier is a serial-in, serial-out one- GIn' decdih III a on-imnioa sytlc 'tpie
imiensitinal sy stolic array, w~hile the second multiplier is a G sein. i utpiri ~l il s't'ial-out.

lpar.ilkvl-in, parallel-out two-dimensional systolic array. The first In Section IV, a parallel-in. parallel-out multil lier lin G(F2'"
itiiliiplier requires a smaller number of basic cells than the second is des eloped. The latter multipl ier has a t~od esoa
iiailltiplicr. The second multiplier needs less average time per comn- array structure.
!*i at rioin than the f irst multiplier if a numiber of computations are
liittrmuied collsecutively. To poerform single computations both
mutltipliers rcquire tile same computational time. In both cases the
j.t hiitedtire% are simple and regular and possess the prperies ~ 11. MULTIPLICXIrION IN GF(2

4 c~curcnc an moulaity Asa cnseuene tey re ell It is assumed that the reader is familiar with the basic
* - aedtarusein VSI ystms.concepts of finite fields. The properties of finite fields arc

i rdex Ieims - finite field, logic design, primitive element. covered in detail in I 11-131. In the following the properties of
* iolic arra%. finite fields are reviewed briefly as required.

* A finite field must contain p' elements, where p is, a prime
1. INrMODCtON integer and in is a positive integer. The tinite field G(2')

1\1 I F or jilois fields have mian> important and practical contains 2'" elements. GF(2' is ain extension field of the
F pplicajtions. Finite fields canl be applied to error- gon il F2 f2eeet.ie.G2 (.I.A

*,tinl,- cOdc, 111 -131, s%%itching theot > 141, and diital arithmiet ic operations in (;F(2') are perforflk'd bN tak ini thec

IS I -'or e sample. finite fields are use(,in~ results miodulo 2.
* ntrutio 0!mas erorcorectne ee. Reed - The nontero clenients of G1'(2") are vznrateiid bN a p~i i

(RS) codes util Iite the finite field (GF(2-1 of 2" tise element aY, s here a is a root of a pfinl~xive nredlucihle
- ' e:~M. schec ti is a positi cne'r The encodina and poyhlta ti x"+ ~,,, '-. . .. (

d. 1) oief a -iavR code reqluire algebraic (F (1) For example F(A) x4 k- 7 Isone sUchI prm-TII
I I Ied (1/'(2'). rather than the usual binarv tiS L it rciucible polynomial for Gf(2 4~).

A.t~oii~t ~ .n utpiaini tit The h nontero elemients of GF(2") can he rIseett' 1

iopraion oftk~ir n 11illi:to l ii' h powkers ot ar, i.e. , GF(2'") -' JUO. ,a
Ile different I rou11 the uISUal linarv arithmetic opera- I } "ic ~ .u"i

Bec aue oif the ir Nimphicit\ and lpractic:al usefulness, ;lo f Therefore, an element of GF(2' canl he alsok e\-
I;,- finite fivldN (;[*2')arc con~idced in this paper. pi rsd as a polynomial of a with degree lesthan it.
III (;*jIi I, ib it independentn and straightfor\%ard. If2 o hat is --I in' -a a'..... itfolmnd i . i

4 . . ~~It I Cdsiel tItan thle 1uu0.l binll a1'\ dditionl. On th Gteb I.I h alw n icsin
11.A. iMulti pliction in (;F(2 is nmo re complex and thle polynomi'al representation Is used to represent the finitL

t It than hinar\ inICegel multiplication,. field GF(2').

%:e~i irc~uits 'have 'been proposedI 111-131,161-181 to Let , , a +-.. a Ia +- a,, a nd 11 - b'...
.11/ te iultipl ication in (U2 . UnfoIIunal s':i. these cir- abia + hu be two elements in GF 2"'I. Thl i

I;C nlot sitled] for use in 'LSl sys tems. due to irregular 'A J B? 5.S, - + +........a + S". wkhere .S --

I' uting antd compl ic-ated control proiw Liers s vcen as a a, 4- b imod 2) for 0 :E i In, - 1 . Therefore, addition Inl
I i:wlular ,trujtUre or lack of' conctitene' 19! * (;[(2') is realized easily by in independent ".uI\!tv-O l

thdis- paper 1%\o jarallel arc:hitectures, are designed to gales.
;ii Ilipl icatioin in (;[-*2'"). In Sc~tnon 11 in alg~rithni suppose P= P_]a -' + Pa + p(, is the pioduct

.4 of A and B. i.e., P -~AB. P can be written as follows I 1-I 13 :
* .. '.U iptI L:,t j~c J.1iu.1ry In. t9X.-, rcis .d \pidi 25. lYK3. This \4ork

m ~ %teIn *i lS AAiI rcOl'o unwarc uAS7t(5 (i

j(P',mIn.,rths ind in 1' AAih'c ()tt.c,'f ' Ncc'i-jf) P~~rh (Aa*)/,

s R.-c.--.

t~l"111 (al~ 11 1 I o%

:,'J F3

3" 53 I!l1'. TRANSACTIONS UN COMPUS.RS, VOL. .- 3. K1 4. APRIL 19K4

%&here a,' is the coefficient of a' in Aa, i.e., Aa * = E UP..
Sa 1a +"" + ua - a" for 0 - k Sm - 1. From 4UMBER

(1) one obtains p. = ab. o + al + + a(, 1b , + -

.4 I. , P3 C8 a

The computation of Aa* can be performed recursively on i * - -)-- "
k for 0 : k - I. Initially, fork = O, Aact A, i.e.,) a, ".

(0)r.a,, =1.for0 n {nI. Fr k<m-l "i" .-

.,, q-I rn-I 1 (0) (~ 1

(a")a . a-,"" aia am + i a1'a'. " ----

(2) 4,40-

Substituting a' a- t •+ f + . .into (2) yields 1 .2 2_

(-p, *a,, b., - " ,

An = (a(*- + a1_jf,)a + a,-jl. (3) 3 - (' ?i

P1 P1 I

From (3), one obtains , "2"
(2) u 'P

a, a k- + I f f"r I S n n?. ()' "3

"-"~ f: m _)o. (4) " P3 11 3: b) . .. ""
4 P)) p + , ,.

(4)). 5) (1) 2

Fig. I illustrates the step-by-step operations of a procedure 9 2

for pirforming P = AB + C in GF(24). In Fig. I a, ', b. c., _______-

1. and p, are the nth bits ofA(r4 , B, C, F, and P, respectively, (0 "P< " " '
%%here F is the primitive irreducible polynomial. p' is the : .
partial sun, of p,.

In the follo, ing sections this procedure is mapped into two 0 0 "
%y s, t o l i c a r c h i t e c t u r e s . T h e a b o v e s y m b o l s (e .g . , F . P , a ',) a r e L -

still used in the following sections. Fig. 1. A procedure for computng P = AB .- C in Oc ic,:l (.V
where A. B, C. and P arc cementsof G(2"

Ill. A SERIAL-IN, SERIAt.-OLT SYSTOLIC
MUI.1PLIER FoR GF(2m)

In this section a one-dimensional systolic array is devel- r
oped to compute P = AB + C in GF(2"). A similar structure 2

"

was proposed to multiply the usual two's complement binary .0.1&2 .3 .,
numbers 110]. For simplicity in description the ensuing dis- f0fr --fl .3

.ussion is limited to the particular finite field GF(2'). In 0 0 0 1
Fig. 2 this architecture is shown for GF(24). The primitive r Flip-F 3.4.

irreducible polynomial is F = f3 ai(+ f2a + fla + fo. Input Fig. 2. A seril-in, serial-out systolic multiplier for the finte licid II
d, receives the b, of B. The nth bits c., a., andf, of C, A,
and f are received serially at inputs eo, go, and h0 , re-
spectisely. Two Lontrol signals, START and END, are used in '
the design. Inputs ri and to receive START and END control "
,ignals, respectively.

Output t', serially transmits the nth bitp. of the result P out
of the system. The order of the inputs and outputs are also
shown in Fig. 2. The flip-flops associated with inputs to and
h,, are used for the purpose of synchronization. -' i.

The circuit of cell L, is shown in Fig. 3. The operation of -
flip-flops in this system is synchronized implicitly by a clock
signal. In Fig. 3, when r,* = 1, u, = g, at the next time unit In -_
(through switch SW). When r* = 0, u, sustains its value.
Two principle operations of the system are the following: ,

e,., *-- (€-,)- --,'

F}~~~ FIlip llop, 5W .qw

t*. I5 H/g 3 The Or,.uit of the cell L, used in the Mruhplir \hl .v Im l-n .

,, .% " . .•"- .. . -. _• -. ,, -

-,, 'L a." SNSIOLIC MULTIi'LIERS FOR f1-NrF FIji DS F49

TABLE I

The FItlplier The multiplier .''

it, in Fig. in Fig. 4 -.. .

r-- F-2-.-"

ir r .,. ra ' t. -- ' ..""' "A rut ft t , t : . t 3 erlal pa-,11lel l"

o"ti "" i 'O

b twtn F jirt input u,
.1, tire, out;put J a .' (3m if Inp ut/

*" .'. :"utat.'I n t.tinme ,niL0 outpu de a I .',also counted) -- "

-".'.'.-.rn1 , "s ,,0

Ahcre 0 -5 i 3 denotes EXCLCSIVE-Ok operation, and
'h, back,,ards arrow denotes the substitution operation. -. _

A comparison of the procedure in Fig. 1 and the structure -
Of Its. 2 and 3 yields the following facts. The signal u, in L,

equal to ai, in At. [he signal g* is equal to a." in Aa' for
.,nic n. The signal e is equal to the partial sum of AB + C.

Ihe multiplier in Fig. " can be generalized to the finite Fig. 4. A two-dimensional parallel-in, parallel-out,,. stolic

." " A.!d GFt 2') by simly concatenating m identical cells. Extra multiplier for the finite field G/-2').
; _i,,ters and control signals are required if the b,'s are in-
putted serially into the system in the same order as the a,'s.
io;lc properties of this multiplier are listed in Table 1.

* i\. A P-NRALLL-IN. PARA.LLt:L-OUT MI:LrIPLIER FOR GF(2)

In this section a parallel-in. parallel-out, two-dimensional
stlc ,rra) is dcsigned for performing P = AB + C in -

(,I 12"). A similar structure was designed I111 to perform
.:t.il!iplications in standard binary arithmetic. The discussion
in this ,ection is again limited to the finite field GF(24). An

'C(ikOUS development can be constructed for any other T ~
* tnit,: ield (W12"'). Fig. 4 shows this multiplier for GF(2').

I Fin H. 4 D" denotes an l-bit shift register or delay device.
Iq:ut- ,,s c,, e,, .s. g ,'s, and h,, 's receive in parallel the
,,.'s ol 11. c,'s of C. a,'s of"A. andf,'s of F. respectively, for '"

n 1- 3 The p,'s of the result P are transmitted out the .-. ,
'.. '..t in parallel front outputs e, ,'s for 0 - n 3.

Ili circuit Of a basic cell L, is shown in Fig. 5. This
i,. itit is similar to the circuit shown in Fig 3. Two of the ,, ,,-: . .

F, ,nary operation, of a basic cell arc the same as the oper- [ig. 5 Th corcuit of basic cell I.,, uwed in the inultipii ci ,,h' in 1i.6 4
. 1,11" ci% en in t5 . One nma, use degcntrative versions of the
icut in Hig. 5 lot the cells in the bottom rowk and the

;..'htniost column of the array structure in Fig. 4 since sonie V. CONCUSION

HputS'and outputs of these cells are not used. Note that the
11,1:al i:,, is equal to the a" of A(v'. The signal u,k is equal Two parallel architectures are designed for perforniin!

'a :' ' ,I.4t' for 0 _n it 3. multiplication in the finite field GF(2'") of 2* elements. A
S:ome propeities ol the multiplier in Fig. 4 are also listed comparison between these two multipliers is listed in 'able 1.

'. Ib.hle I. The multiplier in Fig. 4 is "programmable" since The multiplier in Fig. 4 can be viewed as a "tinie expansion"
, F hm.-lianr.ItPle. If/." is fixed or seldoril changed then the of the multiplier in Fig. 2. Both multipliers are suited wcll

1.i:!l1 call he Simplilied b) eliminating all flip-flops associ- for VLSI systems because of the simple control, the regular
::, -' ith i. It ,uh a s u 'i c bul tri , and I,,ti: ',. ire' rna\ interconnection pattern, the modular structure, and lin.tl!s
!,tuircd. the complete concurrency of their operations

4?2

-_ .- T 7 1 7707177 % -77 W T.

• " F5

3 4) 1111. ThANSA(1l(,N- (~i (liii, Voi (-1.1. N0 4, 1WRIL 19K4

AcKNOWI.l.L.;\.t N I A.sistiat at USC. His re',ear..h mtere-s arc computer ,%stenis. VT.S arc hitec-

ture. and digital ,ignal prncssing
rThe authors would like to thank the iterees for several

usctul suggestions.

R:F~RhNcls |'. " Irving S. Reed (SM'n9 I-'7 * 7 s A orn in Seattle.
WA on Nosember 12, 123 lIc re~e=cid the

Il P J NaWilliani, and N.J. A Sloane. 1/he TI,,r of Er, ,r-orrci ing B S and Ph.D. degreCs in i a~!hnati,s tion the
C,,'dc Amterdam: Nokh-Holland. 1478. Cahfornia Institute of Technology, Pa,ade:a in

121 W.W, Peterson and E.. Weldon, Jr.. Error-Correcting Codes. Caifrn 1944 and 1949. Tepectloly
2nd ed. Cambridge, MA: MIt Pres. 1'72 From 1951 to lb0he %as associated with Lrtnun
L. R. Berickamp. Algebrait Coding ih '-ry. New York MGraw, Ihilt. Laboratory. Massachusetts Institute ol Technology,
1. Ri8 rtLexington. Front 1960 to 1968 he %as a Senior

141I B. Benjauthrit and . S. Reed. "-Galis \&itching functions and their Staff Member with the RAND Corporataoi. Santa
appliedtion." IEEE Tram. Comput.. vol. C-25, pp. 78-8h. Jan. 1976. Monica. CA Since 1963 he has been a Professor of

151 I S Recd and T. K. Truong. *'The use of finite fields to compute Electrical Engineering and Computcr Science at the
coisvolutions." IEEE Trans. Infirm. Theory, vol. IT-21. no 2. University of Southern California, Los Angeles. He holds the Chare,, L.ee
p6 208-213. ar. 1975. Powell Professorship in Computer Engineering at USC. lie is also a Consultant

lh T C. Baree and D.1. Schneider. "Computation with finite fields." to the RAND Corporation. the MITRE Corporation, anda Director of Adaptive
Inptri. Contr., vol. 6. pp. 79-98, Mar. 1963. Sensors. Inc. His interests include mathematics, VLSI computer design.

171 B. A. Lawi and C. K. Rushforth, "A cellular-array multiplier for coding theory. stochastic prucesses, and information theor).
Gk 2"')." IEEE Trans. Comput., vol. C-20. pp. 1573-1578. Dec. 1971. Dr. Reed is a member of the National Academy of Engincrin.

181 R. G. Gallagher. Information Theory and Reliable Communication.
New York. Wile. 1968.

191 H. T. Kung. "Why systolic architectures?" IEEE Computer, '.ol. 15.
pp. 37-46. Jan. 1982.

i 10l R. F Lyon. "Two's complement pipeline multipliers." IEEE Trans. T. K. Truong (M'82 was Ltoim in Cholun. Vietnam.
C,nmun.. sol. COM-24, pp. 418-425. Apr. 1976.

iii J V. McCI;nnv and J. G. McWhirter. "'Completely iterative pipelined on December 4. 1944. He receied the ItS. degree

multiplier array suitable for VLSI.' IE Proc. G. Electronic Circuits in electrical engineering from the NMStial Cheng

wid v.'em~, vl. 29,no.2. ~ 4-46 Ap. 182.Kung University, Taiwan, China. in 1967. the MI.Sand Systems, vol. 129, no. 2. pp. 40-46. Apr. 1982. degree in electrical engineering from Washingtwn
University. St. Louis. MO. in 1971. and the Ph D,

C. -S. Yeh (S'79) was born in Tainan, Taiwan, degree from the University ot Southem Califormia.
4 on May 13, 1151. lie received the B S. degree in Los Angeles, in 1970.

clectfic:al ren'nceiing from National Cheng Kung Since 1976, he has been , ith iih (ontiunicaii,
Universit,. Taiin. in 1974, the M.S. degree in .,Systems Reseai.h Section. Siti c
electronics from National Chiao Tung Iniversity Technical Staff of the Jet Propuli,, i.alcsta,,r\.
in 1976, anJ the %I SEE. degree in computer engi- Pasadena, CA. Also, he is currently a pan-time Recai h Sicilli' .ct th

, necring in 1OXI from the University of Southern t'nicrsit) of Southern California, and a Consultant to the i.parinicnt o!
Califonia (USCi. Los Angeles. where he is now Radiology, Memorial Hospital of Long Beach, CA Ihis r,,ear i incret, ae
a Ph D. candidate. in the areas of mathematics, VI.SI architecture. coding th..ir, X-r.:s r-,-

Since 1979 he has been a Teuchiri Research stnction. and digital signal processing.

4_%

- c

"a

--,-f4- e , .- , ° , .- - .- l " • ' " o " " - ° ., ' ." ° "
I

" ' " ° " Q °
9. "" " - : '"-"" ' " . "..-.-r-. .,,' ' "-.,." ." -"."-"-"- -" '" '-'. .%

G2

€.

*,. A Note on Superfast 'hreshold Schemes

John R. Bloom

Abstract: Threshold :;themes, or key safeguarding schemes,
are innovative new :pproaches to cryptokey tran-fer or secure
data storage problems. This note outlines a class of schemes

4 which approach optimality of speed and simplicity. The schemes
are based on linear maps over finite fields. These schemes
are the proper generalization of Vernam pads.

Key words and phrases: privacy, security, cryptography, mes;a-, ,.ssing,

CR Categories: 3.81, 5.6, 5.23

A threshold scheme is a method for producing, fror. I message :*,

n "st;i. ows" Y1' "''' Y11" with the piroperties that:

1. Any r shadows suffice to det,ricin .x.

'. No r-I shadows give any information abouL

fi, resho I d schemes have been discussed in papers by Blakley Y21

:;h..i ir 41. whcre many applic;I ions.; irv di;cussed, and A!;mutii iiztl I tm

lJ , where a cl.iss of schemes includi ug shamir's is diS 'USSI; d, ii d hur-

ti1er cros.:- checking capabilities are also introduced. This paper initri,-

du__, :a class of schemes of optimtun spk0ed ind simplicily when the :' ,.

ILtil is large compared to r. These schemes are t.ie gencralizati,, ,,f

\'VrnIm pads.

o ., ;neratv stlchi a tih'c'.[Itld :1miilv, pick \,)5 V . . I . . . V V.t r-.

i.) I -" o thaI no r are linearly dependent. Thi:; can be donek il

, 'ind conjeLcturall" for no suallet q . (See 13] pp. 323-'2)

:onsiderin, tihe messagc x and tiLe shadows y to be elemciit;

f hr , construct ,linearn, ii;,p i. f ron Fr to l* with Lv :

.Ic j(

C3
')1

and Lv I , Lv 1 random. Let iiny; Yi Lv., i = , . n uii 0,15

produced a tireshold scicme. Propertv I is satinfied since any r v.

s Fan and property 2 is satisfied since v,0 is not dependet-t on ;mv. q o
'4

r-[I v. .

In practice one picks q as small as possiblu and redhw s X to a

suquence m messages of size (I.

lProposition: To produce a sequence of m shadows for fixed i r -quire:;

at most mr additions and mr mutiplications. To reconstitute the

r3 r 3

sequence of m x s requires at most -3 + (nml)r additions and 3_ + (m+1) r

mul ti lications. The algorithm meeting these rt.quiremnts is duscri 1d

h., owt~..

r- I

For f L:ed i , there is a vector w r7 wt .i th v! ==0 'v"

r-].
One can construct y = Lv. from the relation Lv. = j w. Lv.. jTo

I x =0
r

rccols it ute X from yi1 5 yi'' lone solves ii.v v(for

Li. vcLor U by GauLssianl elimintion and form, x = lv0 t I,()mi!1
r

relaLion Ltv u" . This algorithin clearly satisfies t1e -j count>;
Sj~ i 'Yij

given above.
SLnue q can be chosen extremely small in many applications, two

savini's are possible. If the 's are stored, no Gaussian elimination

is necessary. If a table of Zech'.s logarithms is stored ([3j, p. 91) thu

ciiCodi og and decodin'; alori thims redkice to r addition; and r tab 1 e

I ook-1ips .

1'o r large mt,LIIeSe threshold ,chewn s take (2+.)r operations.

ii je ctural.lv, 010 Cannot hayv threstold scheuk' s requiring; (2-)r

% .

• . -'G4

operations for large r, n. .\n clhe'nntary result is the followi..,.

Pr)s i t ion: A threshold schume cannot I Ix decoded in fewer than r

o)e ra tions.

i'too I. Since a threshold schme requiires that no r-1 y 'S de tv r-ine iii-,

i r shadows must be used.

[he definiLion of a th reshold scheme requites that each .-,hado:

C:i rv as much info rmation as the nmessage x. This rnessaxgc xp

i, ov,t'-rconm by using a pseudo-threshold scleme. All exis ting, sche:~i, s ivi-

-h variants, only the variant of this papi.r's superfast schvme is out-
" ~ ~I ne'd. .U '

ick vVI .. , Vo, ... , v 1 iI sI) that no r irt 1 ine Iv

, i:pndat . Form a 1inear map 1, with lv x. or = ,.

rc, K r and x . , x are messages or parts of n m-sa', :

I.,.t v. Lv. i = .. ,n. Alt other details are as before.

For these schemes one has, for vach i that no r-1 y " gi,'.

,iv information about x., and this may suffice for many applications,

!wit ,-1 yI's do give information ibout . ile tuple (xo, ... , xk.

''.lw Ii a:i-s, iven in-S v. is, if one correctly gUeSS,'S S Of t' x.
- L

the rest folloW.

V..

3~~*j

L q"M ?*t "-

G5

q4

Ru fe rcn cc s

[1] Ariuth, C. and Bloom, .1. "A Modular Approach to Key Safeguarding"
,.

[2] Blakley, G. R. "Safeguarding Cryptographic Keys", Proceedings of

the National Computer Conference, 1979, AFIPS Conference llroceedilLgs,
vol. 48 (1979) pp. 313-317.

[3] MacWilliams, F. J., and Sloane, N.J.A. The Theory of Error-Correcting
Codes, North-Holland, 1977.

14] Shamir, A. "How to share a secret", Communications of the AC:I, vol.
22 no. 11, (Nov. 1979) pp. 612-613.

4

.1

* _ #% 1C_- ~C ! 9 ~ - ,, -. i 'a _ -- , * ~ \ * ~'*p.. *. *_ -p]

4.' 4-.

111 .4.p.

'I

F

:4
9

II

a. *1
Appendix II

4.

6~

4. Program for encoding procedure I
'9 (including Stages 1, 2 and 4)

4.
4'-

4. J

4

.4.

3d

4

440 I
4

-~4

H2

Page I
O .J--4 -84

C:17:17
. Lt-ne# Source Line IBM Personal Computer Pascal Comiler V!.00
2,, 1 program enf (input,output);

10 3 const WORDLENGTH = 16;
I C0 4 MAXINDEX = 32;

!' 6 type matrow = arrayFl..MAXINDEX] of integer;
.t -7 matrix = arrayEl..MAXINDEX] of mat _row*

channel array = array'l MAXINDEX] ofinteger;
t -,

ii { the rWO_TO_THE function makes up for the lack of a generalize
11 d
12 exponentiation operator in standard Pascal. It returns two
1 raised to the power of its caller-supplied argument.

17. }

2 15 function TWOTOTHE (argument integer): integer;

2,2'i 17 var accumulator : integer;
18 index : integer;

19
... - .- begin

21 accumulator := 1
, _ for index := 1 to argument do

2. accumulator := accumulator * 2;
- n24 TWO TOTHE := accumulator;

1,-) end:

:mtab 25 Offset Length Variable - TWOTOTHE
- 2 14 Return offset, Frame length
- 6 2 (function return) Integer

-- (' 2 ARGUMENT :Integer ValueF
- 1C) 2 INDEX : Integer

a 2 ACCUMULATOR :Integer

2b
'- --

8 the READOCTAL routine; this routine allows the user of
the program to input his values in octal rather Lnar- i,7

30 decimal; it replaces the Pascal standard "read" routine.
-U' 1

procedure READ-OCTAL (var total integer);

?0 3 4 const BLANK = '

2 -6 6 var inchar : char;

5 _C TAL

' 4 "<iv , .'t' K -,_, ,;'' ' , * , .' ' ., .-., '<., .', .'. ...:, .---. ,-'.,>.:.". "- ,;.",,'-. .,?- 4

H3

Page 2

05-24-84

00: 17: 19
,J IC Line# Source Line IBM Personal Computer Pascal Compiler Vl. -)0

-'I

20 39 begin
4(') read (inchar);

21 41 total :
427

21 4 while (inchar = BLANK) do
44 read (inchar);
45

.t 46 while not (inchar = BLANK) do begin
22 47 -total : total * 8 + (ord(inchar) -ord

read (inchar)
-72 493 end

50
S5 end.

- .1 Cffset Length Variable - READOCTAL

- 2 8 Return offset, Frame length
- ~~ -2 TOTAL : Integer Va P

6 1 INCHAR :Char

54 the WRITEOCTAL routine; it replaces the Pascal stand~ard
55 "write" routine and allows the program to report its
56 output values in octal rather than in decimal.

2 5 procedure WRITEOCTAL (number : integer;
field base : integer);

61 var outbuf : array [1..WORDLENGTH] of char;
2- 2 temp : integer;

63 index : integer;
64

65
20 66 begin

.- . dex I to !,OPDLENGTH do outbufEinde '0'
68 index := 1;

21 70 while (number > 0) do begin
22 71 temp := number mod 8;

. 22 72 outbufEindex] := chr (ord('O') + temp);
22 73 index : index + 1;

74 number := number div 8
21 75 end;

76

'.ITE OCTAL

H4 ,

Paqe

00: 17:22
-C L ine -urce Li ne !11M Fersonal Computer P7ascal CoCiler VI.0
21 7 em p k f,.ield _base + 2) di.
1 78 if ktemp 1) then temp := 1;

21 79 if (temp . (index - 1)) then temp inuex - I
:30 for inde:. temp downto 1 do write(outbufIindex])

21 81 write('
82

- 8 75 end;

_,. , Ito a; Offset Lenqth Variable - WRITEOCTAL
- 4 30 Return offset, Frame lenqth

C ') NUMBER : nteger ValueF'
- 24 2 TEMP : I revCer
- 26 2 INDEX :Integer
- 2 2 FIELD BASE :Integer vIL'e_
- 22 16 CUTBUF :Arrav

C 4

35
86
87 { The ADD function returns the logical xor of its two caller-
B 8 supplied arguments. This is addition over GFin) for an. n. 3

"4 89
-0 90 function ADD (terml : integer;

20 91 term2 : integer): integer;

2_ 9., begin
21 94 ADD := ((terml or term2) and (not(terml and term2))
10- 95 end;

Svmtab 95 Offset Length Variable - ADD
- 4 10 Return offset, Frame length
- 8 2 (function return) : Integer
- 0 2 TERM1 :Integer ValueP

2 2 TERM2 :Integer ValueP

96

98 C The MULTIPLY function performs multiplication over GF(n)
99 ,,,,i i _,.*. -. i, - uppli ,,2 .> ;.u and rL-

S(4) of the multiplication.

2"V 102 function MULTIPLY (factorl : integer;
20 103 factor2 : integer;
2):, 14 modul us : integer;
20 105 field base : integer): integer;

106

UIL T I PL Y eMLTFLt
JI

IWI . ; .o -.- -. I / .- •." .•

H5

Page 4

()J-24-84
00: 17: 24

IC Line# Source Line IBM Personal Computer Pascal Compiler "/1.0Q
- 107 -ar i ndex : integer;
.,* 1C)8 answer : integer;

1 E,'

11 I begin
ill

21 112 answer := C;
113

-1 114 for index : 0 to (fieldbase - 1) do
--. 115 begin
-_ 116 answer answer * 2;

JIL
£17

118 if (((factorl mod TWOTOTHE (field _base - inde;..}):
22 119 div TWOTO THE (fieldbase - (inde+l ; :-

22 1 then answer := ADD (answer, factor2);

22 if ((answer div TWOTOTHE (fieldbase))
-7 - then answer := ADD (answer,

1-4 TWOTOTHE (field-base) + modulus)
1 125 end;

21 126 MULTIPLY answer
10 127 end;

*.,,tab 127 Offset Length Variable - MULTIPLY
- 8 20 Return offset, Frame length
- 12 2 (function return) : Integer

o C) 2 FACTOR1 : Integer V'aLeF
- 14 2 INDEX :Integer

- 16-2 ANSWER : Integer
. 2 FACTOR2 :Integer ValueP
4 2 MODULUS :Integer ValueP

- 6 2 FIELDBASE :Integer ValueP

129

13 { The INVERSE function. It accepts a field element and
131 returns the element's multiplicative inverse. This
172 implement.tion is very sl-,, &. primiti.-- it -- ,,!d he
1 replaced by Davida's inverse routine or some other fast
1 4 implementation at the first :pportunity.

116 function INVERSE (element : integer;
C. 137 field base : integer;

20 138 modulus : integer): integer;
1:9

20 140 var index : integer:
141 answer : integer;

* ,ERSE

', ..,.....,,..., .4, _., ,,,...** . . 4 *. * , ... ,..., .. ._,: £ - *:~* *,.,,*'-'.

H6

Page 5

-5-24-84

(.): 17: 27
IC Line4 Source Line IBM Personal Computer Facai Compiler VI. 0

142 squares integer;
14:
144 beqin
145

21 146 answer : ;
21 147 squares element:

148
* _. 149 Tor index := 1 to field_base- I, do

C2t 150 begin
1 51 sqUAres MULTIPLY (squares,-SQuares,modulULS fild t- .

S 53 end;
.,., 154

1 21 155 INVERSE answer
156

1: 157 end;-

I,..ntab 157 Of-'set Length Variable - INVERSE
- 6 40 Return offset, Frame length
- IC) 2 (function return) Integer
- C) 2 ELEMENT : Integer VL-.eF
- 12 INDEX : InteQair
- 4 2 ANSWER :'Integer

2 2 FIELDBASE Inteaer I P
4 MODULUS I rtecqe r 'a-IeF

- 2b) SOUARES I:-Iteger

15:3

159 The DIVIDE function performs Galois-field division.

! L-- it accepts dividend, divisor, modulus, and field-b.ase
161 (in that order), takes the inverse of the divisor, and
162 multiplies the result by the dividend.

20 164 function DIVIDE (dividend : integer;
-0 .5 divisor : integer;

166 modulus : integer;
-," :. .. -, fi-!d b se • nte '- . 1. '-teq. "
he8

-6 9 ian divisor i,,erse irteger.
17 0

171 beg i n

1 17: divisorinverse= INVERSE (divisor, field _base, moCUlus.'
2 174 DIVIDE MULTIPLY (dividend, divisor_inverse,

175 modulus, fieldbase

s7,

* .'---.
117

Page 6
05-24-84

- ([0)" 17 : :)

C ; Line# -sur ce Line IBM Personal Computer Pascal Compiler V1.('0
! 77 end;

.a 1 177 Offset Lenqth Variable - DIVIDE

- 8 16 Return offset, Frame length

- 12 2 (function return) . Integer
- U 2 DIVIDEND : Integer ValueF
- 2 2 DIVISOR :Integer ValueP
- 4 2 MODULUS :Integer Val ueF
-- 2 FIELDBASE Integer Value'

',
- 14 12 DIVISORINVERSE :Integer

18C) The CISTRUCT VAN routine. This procedure constructs a
19 1 squar- .. ndermonie matrix with the dimension supD1 ied bv the
'.'l calIir-C! -outine.

I.IC

-- 1:34 procedure CONSTRUCT VAN (var van matrix-
n integer;

" -. fieldbase : integer;
2 187 modulus : integer

, " 188

. 20 189 var row : integer;

190 column : integer;

I- 191 exponent : integer;
1" 192 index : integer;
I20 19 temp : integer;
194
1 ' 5 begin
196

,I 197 if (n : 3) then writeln ('van dimension 3. error')

2 198 else

21 19 begin

01 (build first row of van.)

204 for column = to n do

2)6
-' 27 build second row of van.

_ 208

22 209 for column I= i to n do

22 21o van [2JEcolumn] : 1;
*.I 211

' {build third row of van. }

C :1 NSTRUCT_VAN
';

.,.e.'-.--',, . - 8 ' ~ -. ~4 ... ~ ~ ~ ~ .*

H8 - -.. - -

Page 7

05-24-84

00:17: ,
IC Line# Source Line IBM Personal Computer Pascal Compiler VI.0C)0i

21:.

2 2 214 van E31[1 := 1;
2 215 van [3][- 2;

216 for column : 3 to n do
2 217 van [3][column] :=

22 218 MULTIPLY (van [3][column- 1), 2,
22 219 modulus, fieldbase

20
221 {build remaining rows of van.3

7- .3 if (n 3) then
224 for row := 4 to n do begin
.... van [rowJl] := 1;

-226 for column := 2 to n do
S- .7 van [row][column]-

.2 MULTIPLY (van [row- 1[column], van [3][co tmn
228 3,

modulus, fieldbase
.. .. 3 Ci end as

e end

'234 end;

t , b 2.-4 Offset Length Variable - CONSTRUCT_VAN
- 8 32 Return offset, Frame length
- C) .. VAN :Array VarP
- 2 2 N :Integer Va1 ueP
- 12 2 ROW :Integer
- 4 2 FIELDBASE :Integer ValueP
- 6 2 MODULUS : Integer ValueF
- 14 2 COLUMN : Integer
- 18 2 INDEX :Integer
- 20 2 TEMP :Integer
- 16 2 EXPONENT : Integer

.5

237 { the BUILDENF routine. It accepts the modulus and field-base
desired by the user and the number of channels to be
transmitted and produces a CODING-NORMAL-FORM matrix (enf).

240 This matrix is (transmitted) X (transmitted - 2), and is
241 gotten by column-reducing the first (transmitted - 2) columns
2142 of a (transmitted) X (transmitted) Vandermonde matrix so
-247 that the resulting matrix is upper-right triangular.

,-.-rlT,3T JCT VAN

V.

119

Page S

...5-..4-84
(.O: 17: 36

IC Line# Source Line IBM Personal Computer- P- scal Cotpiler V1.C'0
243 }-244

2 245 procedure BUILDENF (var enf : matri
2, 246 transmitted : integer;
20 247 modulus : integer;

248 fieldbase : integer);
249

- 2," r colmns : integer;

2 rows : integer;
reducing col : integer;
reduced _elt : integer;

: integer;
2 55 column : integer;

dimension : integer;

6C,

2. 61 dimension TWOTOTHE (fieldbase);

-I 263 CONSTRUCT_VAN (enf, dimension, field_base, modulus);

0-_j o. rows := dimension;
71 266 columns := dimension - 2;
1. 26-7 for reducing_col := I to columns do begin

26b9 C divide reducing-col through by its lead element (we want
-7: ones along the diaqonal.)
Z7 1

22 7for row := 1 to (rows- reducing_col) do
273_' enf[row][reducing call :

2 24 DIVIDE (enflrow][reducing_col],

22~ 75enfC (rows-reducingcol)+l][reducing_col],
b2 2modulus, field _base);

7_? 2-7v enf'(rows-reducing_col)+l][reducing call := 1,

- 1 y."-,mn- ed,..ce to clear the row; cont.i ninq the le d -',,1 ,
reducing-col (that lead element is now a 1).

i-f (reducing col -< columns) then
287 for column : (reducinqcol + 1) to columns do begin
-84 reducedelt := enf[(rows-reducing col)+lEcolumn];

* 85. for row := I to (rows - reducing c0l) do
286 enf[row]Ecolumn]

2: 27 ADD (enf[row]Ecolumn],

• _, L!'; EII

'Y5-24-84

')U: 17: 41
KI Li ne# Source Line IBM Personal Computer Pascal Coipiler VI.")i

3 2B8 MULTIPLY k reduced, elt, EnflroWJ[-edJUC1rn_C
28 ol)I,

26 modulus, field _ase
289

, 29. enf[(rows-reducing_col+l][coLtmn]: 0
nend

, 294 end.

.. b 2'4 O+fset Length Variable - BUILDENF

- 8 b Return offset, Frame length
- 2 ENF A rray VarP
- 2 2 TRANSMITTED i nteer Va L, uF'

- 4 MODULUS Integer .ale#'
2 COLUMNS

- 14 ROWS : !ntec-
_ 20 2 ROW .[n t- ri s r

- '. 2 COLUMN I integier
- 6 2 FIELD BASE Integer VY.-LaP
- 24 2 DIMENSION : Integer

2 REDUCEDELT : nteg'r
- 16 2 REDUCINGCOL : integer

.295
296

. the TRANSFOSE routine accepts a matrix and its dimensions

298 and produces the transpose of the matrix.
* 299

20 300 procedure TRANSPOSE (m : matrix;
20 :.30 var mprime : matrix-

m_rows : integer;
20 0. m _cols : integer);

30o4

.305 var row : integer;
20 36 cal : integer;

20 308 begin

C-."I to i_rrows do

21 310 for col := m_cols do
1 mprimelcol][row] := m[row][coll;

1 end;

it,,mtab 312 Offset Length Variable - TRANSPOSE
- 2054 2066 Return offset, Frame length
- 2046 2:48 M :Array kal IeF

,-N P O.SE

.. "

_ a a a . . * . - .-. .

Hll

Page IY

65 -24-84

Q0: 17:44
1- Li ne# Source Line IBP1 Personal Computer Pascal Compiler VI.00

- 2048 2 M_PRIME : Array VarP
- 205' 2 M_ROWS :Integer ValueP

- 2052 2 M COLS : Inteqer ValueF'
- 2058 2 ROW : Integer
- o00 2 COL :Integer

\' -4

C the EXTRACT _SUBMATRIX routine accepts the enf matri% , the
7 1 number channels to be transmitted, and the number of
717 channels to be receivea. It produces a smaller matrix.

I which will be used to construct the encode and decode revs
-19 for this particular configuration of transmitted and

C 2 received channels.

procedure EXTRCT .SUBM ATRIX (vr sLubmatr1x>: matri..
: 27 enf : matr 1;;

0 324 transmitted : integer;
=5 received : inteaer:
-26 field _base : integer

'328 vat enf _prime : matrix;

row : integer;
column : integer;

1 dimension : integer;
inde- : integer;

*4.' 34

,35 begin
336

21 337 dimension := TWOTOTHE (fieldbase);

21 ---.9 TRANSPOSE (enf, enfprime, dimension, dimension-2);
44340

7,41 inde' C0;
Z,4 22

2. 3cr , (dimension - (transmitted - 1)) to
21 744 (dimension - received) do begin

. "~ '" i ndex = in de,% + 1"

22 -46 for column := I to transmitted do
-747 submatrixindex][column] enf-prime[rowIcolumn'
7348 end
349

LC 350 end;

• -,.,t 7-b 5C Offset Length Variable - EXTRACTSUBMATRIX

'r;.4CT..SUBMATRI X

6N i-.t

H12

"age 11
C'05-24-84
U': 17: 49

-. L1-e# Source Line IBM Personal Computer Pascal Compiler '.1.0'
- 2056 4122 Return offset, Frame length

0 2 SUBMATRIX :Array VarF
- 2048 2:48 ENF : Array ValueP
- 2052 2 RECEIVED *Integer ValLeF'
- 4106 2 ROW : Integer
- 4110 2 COLUMN :Integer
.-4114 2 INDEX : Integer
- 4106 2048 ENF PRIME : Array

- 4112 d DIMENSION : Integer
-. 2050 TRANSMITTED :Integer ValueP
2054 2 FIELD BASE . Integer ValueP

75Z C the BUILDENCODE_KEY builds the matrix which will be used
to Proauce the (transmitted - received) coded channels +or
transmission. The first (received) channels are sent in
cne clear.

35-7

-,3 procedure BUILDENCODE KEY (var encodekey : matrix
_" 59 submatri. : matrix:

2 6o transmitted : integer;
361 received : integer;

. 362 modulus : integer;
363 field _base : integer ;:
3,64

2 365 var columns : integer;
366 rows : integer;
3 67 col : integer;
368 row : integer;
369 reducingrow : integer;

0 370 reducedelt : integer;
3.71
372

C 377 3 begin
21 374 rows := transmitted - received;

7,-7-- - .,..Sn -- -* . .m +-t r •

376

-. r reducing_ro = ,.s dcwrnto 2 do
-1 -78 for row := (reducing row - 1) downto 1 do begin

379

22 360 reducedelt := submatrix.row]
2 381 Creceived+(rows-reducingrow)+1];

382 for col := I to (received+(rows-reducingrow)) do
22 383 submatrix [row]Ccol] :=

384 ADD (submatrixCrow)[col),

, LLD ENCODE _:EY

.4.4Z

Page 12
05 -24-84
0(1: 17: 52

IL Lire# Sourcz Line IBM r.rsonI Cirmputer F'ascal Compil - I.
.. ... MULTIPLY l(redutced _elt, submatrix[reducing row[J

22 3& modulus, field base)
,, 22 :.6

2387 submatri.[row][received+(rows-reducing_row)+] =-

end;

7.91 for row := 1 to rows do
_f : for col := 1 to columns do

encode_keyErow]Ecol: submatrixErow][cc'.
4

9 end,

.b -- Offset Length Variable - BUILD. ENCODE KEY
-.2.15 2084 Return offset, Frame lenQt;

. . 2 ENCODE_KEY :Array .rP
- 2048 2048 SUBMATRIX :ArraV ValueP
- 2052 2 RECEIVED :Integer ValueP
- 2054- 2 MODULUS :Integer ValueFR
- 2o62 2 COLUMNS : Integer
- 2064 2 ROWS : Integer
- 206 2 COL : Integer
- 2068 2 ROW :Integer
- 2050 2 TRANSMITTED :Integer ValueF

- 2056 2 FIELD_ BASE : Integer ValueF
2072 2 REDUCED ELT Integer

- 2070 27 REDUCINGROW :Integer

396
397

398

399
40o

401 { the ENCODE procedure. It accepts the number of channels
402 transmitted, the number of channels to be received, the

:l ' ~ ~ ~ ~ ~ , "r! 4F.
,- m I r! H J ' 0 :l . C M.- T+" 4- , , m m-m . ' m- HIrr

404 key and begins reading plaintex.t words. It encodes the

•-'., p1 ai,,t-,.t words and pri.,ts tcxi, u ..

406 until it encounters an end-of-file flag.

2f 408 procedure ENCODE C transmitted : integer;
20 409 received : integer;
_ 410 modulus : integer;

,: 411 field base : integer;
20 412 output-channel : channel _array

CODE

H14

Page 13
05-24-84
00: 17: 55

IC ine# Source Line IBM Personal Computer Pascal Compiler V1.O
413
414 var enf : matrix;
415 enfprime : matrix;
416 sUbmatrix : matrix;

20 417 encode_key : matrix;
418 decode_key : matrix;
419 cool _decoder : matrix;
420 inde." : integer;
, 21 keycolumn : integer;
42 row : integer;
42--_, col umn : integer;
424 dimension : integer;
425 EOT : boolean;
426 response : char;
427

428
20 429 begin

4 C
21 431 dimension TWOTOTHE (fieldbase);

21 433 BUILDENF (enf, transmitted, modulus, field base);
21 434 TRANSPOSE(enf,enfprime,dimension,(dimension - 2));
21I 435 writeln~writeln('ENF MATRIX---------------

21 436 for row := 1 to (dimension - 2) do begin
22 437 writeln;

43 for column := 1 to dimension do
439 WRITE-OCTAL (enfprimelrow][column], fieldbase)

21 44(:) end;
21 441 page;
21 442 EXTRACTSUBMATRIX (submatrix, enf, transmitted, received,fiel

442 dbase);
21 443 writeln;writeln ('SUBMATRIX------------------------

444 for row := 1 to (transmitted - received) do begin
445 writeln;
446 for column := 1 to transmitted do

22 447 WRITE OCTAL (submatrix[row][column], fieldbase)
4438 end:

21 449 page;
2i 450 BUILDENCODEKEY (encode_key, submatrix, tr.nsmitted, c-i.
1 4 450 d.,2i 451 modulus, fieldbase);

711 452 writeln;writeln('ENCODE K EY ------------------------
21 453 for row :'= 1 to (transmitted - received) do begin
22 454 writeln;
22 455 for column := 1 to transmitted do
22 456 WRITE-OCTAL (encodejkey~row:[column:, fieldbase)

jir.CODE

:. - - w -~ .~.

H1 5

Page 14
.'.' 5 , -24 - 4

00: 18:(.)4

:- IC Linel# Source Line IBM Personal Computer Pascal Compiler V1.C0

21 457 end;
21 458 page;

459
460 the encode routine now reads in "received" cleartext words,

461 generates "transmitted" - "received" coded words, and sends

462 all "transmitted" words out.

1 464 EOT := FALSE;

465 repeat
SC 466 begin

" 467 writeln('please enter, on one line, in octal and separate

46' d').
463 writeln('by blanks, the values to be transmitted over the
468);
469 writeln('transmitters received:2,' channels');

470 for index := 1 to received do begin
24 471 READOCTAL (output_channel~index>J);

472 end;
473
474 writeln(words transmitted are (in channel order):'):

-' 475
2 476 for index := (received+l) to transmitted do begin
24 477 output channelCindex] := o;
24 478 for key_column := 1 to received do
24 479 output channel[index] :=

04 48 ADD (output_channellindex],
,4 401 MULTIPLY (output channel[key_columtrn,],
24 482 encodekeyE (transmitted-index)+l]

S 24 483 Ekey_column],
24 434 modulus, field_base)

24 484

485 end;
496
487 for index := 1 to transmitted do

2T 488 WRITE_-OCTAL (output-channel [inde%1],, field_base> :489 writeln;writeln;

2. 491 writeln(do you want to send another ',received:2,' words
:27 41 1 ' 7)

492 writeln('(type y or n)');
497 readln(response);

23 494 if (response = 'n') then EOT : TRUE;

495
'.-, 496 end
2 1 497 until (EOT);

21 498 page

NCFODE

%

Page 15
05-24-84
-"): 18:14

. 10 Line# Source Line IBM Personal Computer Pascal Compiler VI.O.
49.9
500 en.d

vmtab 5._ Offset Length Variable - ENCODE

- 72 12400 Return offset, Frame length
- 0 2 TRANSMITTED :Integer ValueF

2 2 RECEIVED :Integer ValeP
- 4 2 MODULUS :Integer ValueF

-" - 2122 2048 ENF Ar r',"

-12364 2 INDE;x :Integer

--1236 2 OW :Integer
-1274 1 EOT :Boolean
-12770 2 COLUMN :Integer

6 2 FIELDBASE :Integer ValueF

4170 2043 ENF_PRIME Array
- 2 2 2 DIMENION : ner

176 1 REP ,SE : Char

- *218 2048 SUBMArF< x : rray
S266 2048 ENCODE_ KEY : Array

107 .14 2048 DECODE_KEY Arrav
12 66 2 KEY. COLUMN : Integer

70 64 OUTPUTCHANNEL :Arr ay Val ueF
_ 32 2048 COOLDECODER : Array

50 1

503 THE MAIN ROUTINE. THIS CODE READS IN THE NUMBER OF
504 CHANNELS SENT AND THE NUMBER OF CHANNELS WHICH NEED
5. 505 TO BE RECIEVED, AND GENERATES AN ENCODE-NORMAL FORM

506 MATRIX FOR THAT CHOICE OF 'TRANSMITTED' AND 'RECIEVED'.
, .. 507

5032": ' 5 C) 5 7,

_K),.9 var field base : integer;
* 10 51C modulus : integer;

10 511 transmitted : integer;
10 512 received : integer;

' - '-', - I.S-: --, -, j-,. -n W- _ . "-,- ,.

514 inde' : integer;

, .5 516
~517

!c) 519 begin

519
i 520 writeln(chr(27),'M'); (enable elite type on printer3

7521

11 522 writeln('please enter, on one line and separated by blanks,"

11%
.5. '% , ' . -€ . . " ', lJ .- " . " - ".. . " i, .. -- ", '.' . " . . . ". . ." . " . . . "

+, .!... . ., f,. + +.-.-, .-. :,: ,....-.........,........,...............-.,.....,..........H 1-

17 T -° 7, :

-. F .ge 16,i i!' ! 5- ,--8 4

93ICLi'# Sor Lne0': 13: 17
I C Li ne# Source Line IBM Personal Computer Pascal Compilcr V:.c!O
1 1 52 2

*5 23 writeln('the field-base, modulus, number of cnannels to be se
11 523 nt,");

$ 11 524 writeln('and number of channels to be received. The modul us:
11 524 ;
I 5_25 writeln 'should be an octal number; all other numners ShOuld

11 52
,- '5.'226 writeln('be decimal.")-

writeln;

1i 59 read (fieldbase);

'l 57C READOCTAL (modulus);
1 modulUs modulus - TWO TO THE(field base)

it 572 read (transmitted).;

11 5readln (received),
.t 5 4 viriteln;5 55

1 536 writeln ('thank you... please wait');writeln;
537

11 53 ENCODE (transmitted, received, modulus, field_base, channe.
11 538

539

it 540 writeln(chr(27),chr(64)); .,'disable special E -. rz modes
11 540 }

S.1, 541
542 end.

*!ff..mtab 542 Offset Length Variable
0 76 Return offset, Frame length

74 2 INDEX :Integer Static
4 2 MODULUS :Integer Static

10 64 CHANNELS :Array Static
8 2 RECEIVED :Integer Static

.. 2 2 FIELD BASE :Integer Static

6 2 TRANSMITTED :Integer Steti-

Errors Warns In Pass One

:0ZFl
- _._- - - - . . -

-., '- °. .0

Appendix I

.. Program for decoding procedure

i'i'"(including Stages 1, 2, 3 and 4)

.J

.-

- °

. o

'4,

*p%

'p.?'," "..."" _ _ "_ i2;" "'_ iii2'' " •" " ""/ """"'""."

-~~~~~71 T 7 -6 -r . -*..a a - - -..-

12

r.%'.' za g e

17: 4-: 5,
f C LJne 4 'Sourc,2 Line [IE-i Fersonail COmOter W'scaI C.,TJ1icr 'lr.U '

1, rogram n- (irn.ut,oUtF)ut, Z

const zero =
- 1[4 one

Sm a k i n d e.,
;I-C ' WCFELENGTH =

-7

type mat row = ar-ray [l.. ma inde] I+ integer:
matri rray l.. nax inde x] o matf rina ;

0 Ii ._a- inre;: : inteqer:
, 1 'an : matri:.

17 dn+ : matrix
9" Ic 14 dn" jrime : matrix:

1 received : integer,
1 transmi tted : nteger.
.10 7 ield base : integer;

1 modulus : integer;
i 79 row : integer;
- - ,ol : integer:

-1 10N : integer;
datarow : integer;
datarows : integer;

4 ex t ra_ desi : integer;
.- 5 colIumns : integer:

dimension : integer;
temp : integer;

", channel : integer,
i desired-channels : integer;

reducing_elt : integer;
1 reduced _elt : integer;

p 72 dead channels : integer;
i deadchannel : matrow;

Z 4 decoder : matrix;
desired channel mat row;
data : matrix;
d', _ i erRt amtr:

-I3 active channel mat row:
"I . 79 codeword : mat.row;

-" 40: clearword : integer;
i, 41 continue : char;

42 active : boolean;
1 4 EOT" : boolean; CEnd Of Tr-nsmissiun
1O 43

-f.- 9 .44
1 .1* 45

,'9.

., : ,
. .9-.).9* ,*-... '. '-' - V , .- : .. .'9-*. : .

13

,Fage 2

17: 4.:58
: ne So Urce Line IBM Fr:'-onal Cc:nputer _1cj Compi 1cr i1.

4o { the TWO 10 THE function makes up for the 1.ack of a generalize
4- d
47 e:.ponenti ati on oerator in standard Fazcal. It returns two
48 raised o the power of its caller-supplied arqument.

4,S3
46~

5(: unction TWO _TO THE (argumert : integer): integer;
'4 51

V =t accumu1UatCr : integer;

i- inde- : integer;

546
_ 6 aEccLl ator :=1 ;

.or index : 1 t:o ar-QL.oet du
accUmul ator : = aCcL(t'1Ui ator *

5 TWiO D TiiE : = accuinu. ;tcr
' 1 '-" endi;

fit -_ab -b,., fset Length Variable - TWO TO THE
2-.. 14 Return offset, Frame lencqtn

- 6 2 (function return) Irteqer
C 2 ARGUMENT : [ntee,...ueF'

- 1 2 INDEX In z:cUer
-- 3 .2 LACCUMULATOR . Integer

,5 1

64 the READ OCTAL routine; this routine allows the iser o
b05 the program to input his values in octal rather than in

decimal; it replaces the Pascal standard 'read" routine.

7

-7 procedure READ_OCTAL (var total : integer);

<1 ,: const BLANK= :

7.

V," 75 beg in
.. read tinclnar); I

78

21 79 while (inchar = BLANK) do
1 3') read inchar);

D 81

. I
', .- 'l ~i l & t

- : -
. ., - a • -, . , , , , . , _ :, , -

V% W% .; 4- F V,. M

14

I . Page 7
5-2-34
7.44: (

I C Line# Source Lina IM Fersonal Computer F'asca! Co, ipiier VI .00

21 82 while not (inchar = BLANK) do begin
2 -3 total total * 3 + (ord(inchar) - ord('l"));
22 84 read (inchar)

-' end

7' end;

"- 7 Of+set Length Variable -- READOCTAL
.- a 8 Return offset, Frame lenqth

* -.-. 2 TOTAL Intieger .arF
6 1 i NCHAR Char

-0 te iWF. TE OCTAL routtine. it replaces the Fascal standard

7 1 ri .. routine and -Al I o the ,,rogra...r to repor- i-:
output v-lues i, o-ctal rather than in decimal.

-3 4 procedure WRITEOCTAL (number : integer;
95 fieldbase : integer):

var outbuf : array [. .WORDLENGTH] of char;
0 ,temp : integer;

99 i ndex, : integer;

::-.:
.. 103 for index := 1 to WOF:DLENGTH do outbuf[index]= '0:

104 index := 1;
.. 105

-106 while (number > 0) do begin
107 temp := number mod 8;
S108 outbuf indej I chr (ord('0') + temp):M'%Cq -:.-
109 inde,. = inde. + 1;
S 10 number number div 8

21 1ii end;

.,1 temp (fieldbase + 2) div 3);
2L [t , i..)- p .1 1) then t=emp 1

115 if ktemp k index - 1)) then temp := inde. - 1i
21 !16 for index. := temp downto I do write(outbufC rdex];
--1 117 write(' ")

118
1 119 end,;

-' ,t b 119 Offset Length Variable - WRITE OCTAL

: -'E OCTAL

" ": o- , ' '. ' '- .. .-' '. . '. -" " '. -' ,' '. -.' '.. .x ' ''- " .' ' % .. . ' " x - " " . . '- .' .'- .' .; j i - " . .]%-

""":.15

Page 4
C' 5-23-84
17: 44:05

J IC Li1e# Source Line IBM Personal Computer Pascal Compiler V1.O0
- 4 C0 Return offset, Frame length
- 4 2 NUMBER " Integer ValueF
- 24 TEMF :Integer
- 26 2 INDEX : Integer

2 2 FIELDBASE :Integer ValueP
16 OUTBUF :Array

12']1

1 { The ADD function returns the logical xor of its two caller-
124 supplied arquments. This is addition over GF(n) ... _r .any n.,.

, 125

2) 126 function ADD (terml : integer;
72 17 term2 : integer): integer-

KU ~' begin
21 1A ADD := (terml or term2) and (not(terml and term2)))
L0 1 1 end;

o ',tab 131 Offset Length Variable - ADD
- 4 1o Return offset, Frame length
- 8 2 (function return) Integer
- u 2 TERMI Integer V.l'UeP

.2 2 TERM2 *Integer ValUeF

.:2
. :' 133

134 { The MULTIPLY function performs multiplication over GFkn)
135 modulo the caller-supplied modulus and returns the result
136 of the multiplication.
17

2. 138 function MULTIPLY (factorl : integer;

139 factor2 : integer;
2C) 14C:) modulus : integer;
20 141 fieldbase : integer): integer;

! 'j

20 143 var index : integer;
S 144 answer : integer;

145
.0'14o begin

147
i2 148 answer :

-" 149
S 21 150 for index C) to (fieldbase - 1) do

21 151 begin

JLT I FLY

'_"" "" ' ""5'"""" ":' ' >_""''"'-" "' '""- " >)- -... ,.--,.------,
,,,,~~~ ~~~~~~.. .,r,€t -;- .- ,,,, . ..-• , -, . , . .- ".. .-: ,...-..... . . .- .,-",......,.- ",-, , -

. . . . - , - -. " "." "-.-L -... .. ' ", i
' -

: ' ' ' : ' L' " $ ' b' -W ; . . . " "- - " -

16

Faqe 5
0 5-23-24
17: 44:08

1C Line#4 Source Line IBM Personal Computer Pascal Compiler Vl.00
answer : answer * 2;

7

22 154 if ;((factorl mod TWOTOTHE (fieldbase - index))
.22 155 div TWOTO _THE (fieldbase - (index+1))) 0

156 then answer ADD (answer, factor2);
157
=. P15 if ((answer div TWOTOTHE (fieldbase)) ' ()

en answer := ADD (answer,
TWOTOTHE (fieldbase) + -odulVS)

i end;
- 2 MULTIPLY := answer

end;

t: : Offset Lencth Variable - MULTIPLY
* ':' - S _- 0. Return offset, Frame ienq-n

-. 2 .iUncti on return) . Intg,er-
- ." 2 FACTOR1 :Inte.er _. leF

-- 14 2 INDEX -Integer
- 16 2 ANSWER :Integer-
- 2 2 FACTOR2 : Integer VlueF

- 4 2 MODULUS :Integer Vl-teP
6 2 FIELDBASE : Integer ValueF

164
165
166 . The INVERSE function. It accepts a field element and
167 returns the element's multiplicative inverse. This
16a implementation is very slow &. primitive-- it should be
1 replaced by Davida's inverse routine or some other fast
17) implementation at the first opportunity.
171

172 function INVERSE (element : integer;
173 field base : integer;

_ 1-174 modulus : integer): integer,

175
2Y 176 var index : integer;

177 integer;
2K 178 squares integer;

' "18 C) begin

16-. ... answer : 1;
.21 183.. squares:= element;
, .U 184

." 185 for index := 1 to (fieldbase- 1) do
186 begin

.ERSE

I,&

" 7< "-" " - -" "'- ; " "- "- ". V - ". ' , " "" "- " " " - "-""' " " • ' " " " "" " '." ' " •I~. "- ._" *

.-.-,.':v-..-I7-

17

Page 6
. 5 -23 -84
17: 44:11

,- IC Line# Source Line IBM Personal Computer Pascal Compiler V!.)O
2- 187 squares MULTIPLY (squares,squares,mooulus,field_base,;
22 188 answer MULTIPLY (answer,squares,modulus,field _base)
21 169 end;

19o
21 191 INVERSE := answer

192
S 193 end;

(l "to !C,' Offset Length Variable - INVERSE
- a 2') Return offset, Frame length
- 10 2 (function return) : Integer
- o0 2 ELEMENT Integer V al ueP
- 12 2 INDEX : Integer
- 14 2 ANSWER : Integer

, - 2 FIELD BASE : Integer 'aalueP
- 4 2 MODULUS : Integer ValueP
- 16 2 SQUARES : Integer

194
195 C The DIVIDE function performs Galois-field division.
196 it accepts dividend, divisor, modulus, and field-base
• 97 (in that order), takes the inverse of the divisor, and

:193 multiplies the result by the dividend.
199
2,0 function DIVIDE (dividend : inteqer;

divisor : integer;
-)2 modul us : integer;

2 2field-base : integer): integer;

2. 71 (o5 var divisorinverse : integer;
206

2. .)7 begin
208

': '09 divisor _inverse := INVERSE (divisor, field-base, modUlIs);

21 . DIVIDE .= MULTIPLY (dividend, divisor_ inverse,
21 211 modulus, fieldbase

1') 213 end;

f-mtab 2b T Offset Length Variable - DIVIDE
- 8 16 Return offset, Frame length
- 12 2 (function return) : Integer
- 0 2 DIVIDEND : Integer ValueP
- 2 2 DIVISOR : Integer ValueP
- 4 2 MODULUS :Integer V.alueP
- 6 2 FIELDBASE * Integer ValueP

'iDE

6 %%

1* 18

Page 7

C)5-23-34
17: 44: 1

.;C IC LDn SOurce Line IBM Personal Computer Pascal Compiler VI.0('
14 2 DIVISORINERSE :Integer

214

215

216 The HERMITE NORMALIZE routine takes a matri,," which is
at least two columns wide and which is also at least

218 as tall as it is wide and reduces it to Hermite normal
21' form (i.e. to a form with an identity iatri x at the top.,) 3

,, 1 procedure HERMITENORMALIZE (var m : matri ,
rows : integer;
cols : integer;

224 Aodl : integer;
f_base : integer);

2., var row : intger;
z Z oI : integer;

. 229 reduCing col : integer;
2, 230 reducing elt : integer;
20 231 reducedelt : integer;
20 232 index : integer;

2:: temp : int6er.
* 234

235 begin
236

21 237 if (cols < 2) then
-L 238 writeln ('stripped matri;," has :'2 cols: error')
21 239 else begin

24o
22 241 for reducingcol := 1 to cols do begin
2: 242 index : reducingcol;
- 24' while ((m [reducing-col][index] = C)) and

244 (index < reducingcol)) do
245 index := index + 1;
24b
247 if (not(index = reducing col)) then tswitch c
247 oi1'
248 for row 1 to rows do begin

24 249 temp : m [ro-,][i.ingcol];
24 250 m [row][reducing col] m [row][inde];
24 251 m [row][index : temp
23 252 end;

253

254 reducingelt := m [reducingcol]Ereducing_col];
255

256 (set leading elts. of columns to 1 by dividing cols by constant

-EF.'MI TE. NORMALI ZE

__%

i aj

. 7 727 7 . .77".7 -O -7, 77

19

Page 8
.. " 05-23-84

Li S17:44:17
JK IC Line#~ Source Line IBM Personal Computer Pascal Compiler VI.0)

. .-. "256 . }

* 257
, 258 temp := reducingelt;

2 259 if (not (temp = 1)) then begin
24 260 m[reducing_col][reducingcl] := 1;
24 261 for row := (reducing_cal + 1) to rows do
24 262 m [row][reducing col] : DIVIDE (mrow]Ereducing-col]
24 262 temp,
24 263 modl , fbase

264 end;
265
266 {column-reduce by clearing row 'reducing-col' using entry
267 m[reducing_col J[reducing_cal].
268
269 for cal := I to cols do~270

2:, 271 if (not(col = reducing_col)) then begin
24 272 reduced elt := m [reducingcol][col];
24 27. if (not(reducedelt = C))) then
24 274 far rw =reducing col to rows do
24 275 m [row][col] :=
24 276 ADD (m Crow][col],
24 277 MULTIPLY (m [row][reducingcoll,
24 278 reducedelt, modl, fbase
24 279 end

280
23- ., 281 end
22 282 end

28.
10 284 end;

, .mtab 284 Offset Length Variable - HERMITENORMALIZE
- 10 42 Return offset, Frame length
- -2 M :Array VarF'

2 2 ROWS :Integer ValueP
- 4 2 COLS :Integer ValueP
- 14 2 ROW •Intee
- 16 2 COL : Integer
- 6 2 MODL : Integ,-
- a 2 FBASE :Integer Val UeP
- 24 2 INDEX : Integer
- 26 2 TEMP : Integer
- Is 2 REDUCINGCOL :Integer
.22 2 REDUCEDELT :Integer

-d - 20 2 REDUCINGELT -Integer

.F-11 I TE NORMAL I ZE

I10

F' ag e 9
05-27-84
17: 44:21

=in-4 Source Line IBM Personal Computer Pascal Compiler VI. 00

" '- 288

. 269 { The CONSTRUCTVAN routine. This procedure constructs a
29C square vandermonde matrix with the dimension supplied by the
291 calling routine.

7 2 procedure CONSTRUCTVAN (var van : matrix;
i 'Q4 n : integer;

field base : integer;
modulus : integer):

.' 1 9 var row : integer;

column : integer;
exponent : integer;

'1 index : integer;
temp : integer;

2 -.3:14 begin
-;.c:5

1 .306 if (n < 3) then writeln ('van dimension < 3: error')
2_ 307 el se

21 308 begin
(3o9
C3 {build first row of van. }

311

... 1 van [i][i] :: 1;
2 17 for column := 2 to n do

2 314 van 1)[column] := 0;
.-15

44 31b .build second row of van. I
317
318 for column := 1 to n do

22 319 van E2][column] .= 1;

*' 321 Ct,,- ild third row of van. }

van 133[I] := 1;
van I32 : 2;

22 25 for column := 3 to n do
22 326 van [3)[columnJ :=
22 327 MULTIPLY (van E3][column - 1], 2,
22 328 modulus, field-base

330 Lbuild remaining rows of van.]

,_-;NrTRUCTVAN

-age lC.:
05- 23-24
17: 44.24

"2 LC Line# S]lUrce Line IBM Personal Computer Fascal Compil:er V!.i00
.31

it (n ,her,
for row := 4 to n do begin

"_._3 4 van Crow][l] : 1;
15 for Column : 2 to II do

van [row][column]

MULTIPLY (van Crow-- I][column] van I:][Colutn

7.8 modulus, field _base

end
.340
.41

342 end
.34 end;

., 7;43 Offset Length Variable -- CONSTRUCT. AN
- 8 32 Return offset, Frame length
- o VAN :Array - arF

2 N Integer Va!,_weP
- 12 ROW -Integer
- 4 2 FIELD BASE : Integer* ValueF
- 6 2 MODULUS :Integer ValueF
- 14 2 COLUMN :Integer
- 18 2 INDEX :Integer
- 20 TEMP .Integer
- 16 2 EXPONENT : Integer

344
345

.346
347 the TRANSPOSE routine accepts a matrix and its dimensions
348 and produces the transpose of the matrix.

349
2, 350 procedure TRANSPOSE (m matri-.
2, 351 var mprime matrix;

:, 53 m cols : integer):

355 var row : integer;
0 356 col : integer;

.357

20 358 begin
21 359 for row := 1 to m rows do
21 360 for col := 1 to mcols do
21 361 mprimelcol][row] : m[row][col];

I ASFOSE

112

Page 11

' 17: 44:28

,J3 IC Line# Source Line IBM Personal Computer Pascal Compiler VI.00

!0 362 end;

E Svmtab 362 Offset Length Variable - TRANSPOSE

- 2054 2066 Return offset, Frame length

- 2046 2048 M :Array ValueP

- 2048 2 M PRIME :Array VarP
- 2050 2 MROWS :Integer ValueP
- 20Q52 2 MCOLS : Integer ValueP
- 2058 2 ROW : Integer
- 2060 2 COL : Integer

_364
• .65

'66 C THE MAIN ROUTINE. IHIS CODE GOES THROUGH THE ENTIRE

DECODING PROCESS, WHICH IS BROKEN INTO COLD, COOL Ai'r9
.b HOT PRECOMPUTE STAGES AND ONLINE DECODE STAGE.
-769

I 0 70 begin

3S --, C COLD PRECOMPUTE STAGE BEGINS HERE.

373
374 { First, we read in the modulus and field-base for the
375 Galois field to be used in our calculations. 3

c--: 76

11 3.77 writeln(°Please enter, on one line and separated by a blank,
1.1 377);
11 378 writeln('the field-base and modulus to be used. The');
1I 379 writeln('field-base should be a decimal number and the');

1I 380 writeln('modulus should be an octal number.');
381

11 382 read(field-base);
11 383 READOCTAL(modulus);

384
11 385 modulus := modulus - TWO TO THE(fieldbase);

386
37

368 { Next, we construct a Vandermonde matrix called VAN.
389

II 39 dimension := TWOTOTHE(field_base);
391

1i 392 CONSTRUCT-VAN (van, dimension, field_base, modulus):

393
394

395 { COOL PRECOMPUTE STAGE BEGINS HERE.
396

Z, 9F

. .Z .7-~~i.. .y .Q.~ .. 4 c

113

Fage 12
05-23-84
17: 44:35

3 IC Line# Source Line IBM Personal Computer Pascal Compiler V1.00
3.97 { Next, we read in the number of channels to be sent
398 by the transmitting node.
399

I1 400 writeln('Please enter the number of channels to be sent');
11 401 writeln('by the transmitting node. This should be a');
11 402 writeln('decimal number.);

403

II 404 readln(transmitted);
405
4t1-7 {Next, we read the number of channels to be received by

408 the receiving node.

11 410 writeln('please enter the number of channels active at');
11 411 writeln(°the receivers node; this should be a decimal number.
11 411 ")t

412
Ii 413 readln(received),

414

415
416 { Now we strip away the extraneous rows and columns of the
417 vandermonde matrix. We leave only the topmost n rows and
418 the leftmost k columns of VAN.
419

i1 420 rows := transmitted,
II 421 columns := received;

42-

4-4 { Next, we hermite-normalize van to give us a tall, thin matri.
425 with an identity at the top.)
426

1I 427 HERMITENORMALIZE (van, rows, columns, modulus, field_base);
428
429

40 {7 Finally, we construct our "special" left-kernel for the
431 stripped, col-reduced VAN. This matrix is short and
43772 ffat, .ith an identity at the left, and it is our DNF
433 (Decode-Normal-Form) matrix.

;1-4
435 for row := 1 to (transmitted - received) do

Ll 436 for cc! := 1 to received do
11 437 dnf [row)rcol] := van [row + received][col];

438
11 439 for row := 1 to (transmitted - received) do
ii 44o for col := (received + 1) to transmitted do
11 441 if ((col - received) = row) then

.. . * . * * * .*. * *. * .*** .. . - .. _ • := , • ", a - • b " _

I14

Pa ge I-
05-:-8~4

17: 44: 40)
.,J LC Line# Source Line IBM Personal Computer Pascal Compiler V I.

11 442 dnf Erow][col] I
-1 44: else
.1i 444 dnf ErowlEcol] : 0;

445
1.1 446 TRANSPOSE (dnf, dnfprime, (transmitted- received), transmit

11 446 ted);
*'x 4 47

448 HERMITENORMALIZE (dnfprime, transmitted, (tt-sm ttd -- rec
1L 448 eivedl.
," 449 modulus, fieldbase);

451 TRANSPOSE (dnfprime, dnf, transmitted, (transmitted - receiv
451 ed));

452
453
454 wr i tel n;

ii 455 wtiteln ('DNF matrix for ,received:2,' o,t of ,tran-mited:
11 455 2)

. 456 write ('channels over GF 2**(',field_base:l,') mod);

LA 457 temp := modulus + TWOTOTHE (field base);
I! 458 WRITEOCTAL(temp, fieldbase);
11 459 writeln('is: ').writeln;
11 46) for row := 1 to (transmitted - received) do begin
1 461 writeln;
:2 462 for col := 1 to transmitted do

463 WRITEOCTAL (dnf [row][col], field_base);

11 464 end:
11 465 writeln;writeln;

466
467 { HOT PRECOMPUTE STAGE BEGINS HERE.

468

It 469 writeln('please enter, on one line and separated by blank:s,')
11 469
11 470 writeln('the numbers of the ',received:2,' channels active'):
11 471 writeln('at the receiving node. These numbers should be deci
11 471 mal. ');

11 473 for index := I to (received - 1) do read (active channel [ind

477 -:] ' e

474 readln (active-channel Ereceived]);
475
476
477 { Here we fill up the data matrix.

478
11 479 row := 1;
it 480 for index := 1 to received do

LiF

- >.,-,-}.,:-.v ?-' .-..'-1,..'-;.:'?.:-~

115

" Page 14
.'.:uS -23-64

:7:44:46

.C L if-e# Source Line IBM Personal Computer Pascal Cojiler Vl.O1 *

11 481 ii (activechannel Cindex <= (transmitted - received)) the
11 481 n cegin
1 2 482 for col := 1 to transmitted do

12 483 data [row]Ecol]
12 484 dnf [activechannel [index]]col]:
12 485 row : row + 1

486 end;
.1 43-7 datarows : row - I4

... 48

-.- 490 { Here we fill up the desiderata matrix and those rows of the

4dc1 deoder matrix corresponding to channels whicn we are recevin

491 q.
492

1 1 4-3 desired _cannels := 0
- - 4 4 dead -.hannels5 := 0;

.. 11 4 5 extra desid : I;
496 for channel := 1 to transmitted do begin
497 active := FALSE;

493 for inde :1= to received do
. . 499 if (activechannel Einde.' = channel) then active TRUE

17- 500 if ((not active) and (channel received)) then begin

I_ 501 desiredchannels := desiredchannels + 1;
.502 desired channel [desired channels] := channel;

503 if (channel > (transmitted - received)) then begin

14 504 deadchannels := deadchannels + 1;
14 5(1)5 dead channel [dead channels] := channel;
14 506 for col := 1 to transmitted do
14 507 desiderata Echannel][col] := data [extradesid][col):
14 508 ex.tradesid := extra desid + 1

14 50? end
-13 510 else

- 1 511 for col := 1 to transmitted do
,1 512 desiderata [channel31col] := dnf Echannel][col]

1 513 end
1. -514 = -.1 4f --- tie) then hi n

515 deadchannels := deadchannels + 1;

i 516 deadchahane [Jeedchennel] = .- e
1 517 end

.'7 518 else if (channel <= received) then
519 for col := 1 to transmitted do
5i 520 if (col -! channel) then decoder Echannel][col] := I

12 521 else decoder Echannel][col] : 0
11 522 end-,

5 2 75

11 F

-P PI . - -yI ,.1.E. 1. J.W WJW. I ,- -.'*,. i . -. , . - . -,

116

P'a ge 15

05- 2-8 4
17:44:51

IC Line# Source Line IBM Personal Computer Fascal Compiler 'I.1C
524

525 C Here we clear the columns in the desiderata matri- -:orrespond
52.255 ing

-526 to channels which vie are not receiving.
526
52 7

i1 528 row 1;
!! 529 for index := 1 to dead _channels do begin

-I 53C) i f (dead-channel Li nde-.:, I (transmitted rece i v)c, then b
2 5') eg in
1. 531 for channel := 1 to desiredchannels do

7 532 if(not(desiredchannelEchannel] = deadchannel inde,]) th

S 53 en begin
14 533 reducing-elt : data Crow]Edeadchannellindex]];
14 574 reducedelt : desiderata C desiredchannel[channel] I
14 [deadchannelIinde I]]J

14 for col := I to transmitted do
14 desiderata I desiredchannelEchannel] I [col]
14 538 ADD (MULTIPLY(desiderata Edesiredchannellcharn1]][
14 538 col],
i4 539 reducingelt,modulus, field_base),
L4 540 MULTIFLY(data[row] [col],reducedelt,
14 541 modulus, field base))

542 end;
.3 543 for datarow := (row + 1) to datarows do begin
14 544 reducing elt : datalrow][deadchannel~inde;.,;

- 14 545 reducedelt : data Cdatarow][deadchannel~inde,,]];
14 546 for col := 1 to transmitted do
14 547 data [datarow][col]
14 548 ADD (MULTIF'LY(dataCdatarow][col],reducing_elt.
14 549 modulus, field_base),
14 550 MULTIPLY(data~row][col],reduced elt,

.. 14 551 modulus, field base))
-' 552 end:
13 55Z row row + 1
-7 554 end

'. 555 s:nd•
556557I
558 { Here we obtain ones in the "lead" columns of the desiderata
559 rows by dividing through by the values previously in those
560: columns.

561
11 562 for channel := I to desiredchannels do begin
2 563 reducingelt desiderata [desired channellchannel]]

564 [desired channel [channel]2:

DPIF

.4.;

117

4 Page 160Q5-23-84

17:44:59
IC Line# -ource Line IM 1-ersonal Computer Pa.-al Compiler VI.00

12 565 for col 1 to transmitted do
.1: 566 desiderata £Cesireo channellchannel]][col]
12 567 DIVIDE (desiderata [desired _channel[channel]][col],

.2 568 reducingelt, modulus, fieldbase);... 11 569 end;

5 7~ C
., . 571

'7 { Now fill uP the rows of the decoder matrix corresponding
577 to channels which were desired but not active.
574

i 575 for channel := 1 to desiredchannels do
-75-6 for col := 1 to transmitted do

decoder [desired _channel[channel]][col]
ii 578 desiderata Idesiredchannel Echannel]][col];

'. 579

5130
51 { Now we print out the decoder m:n.trix.
582

ii 563 writeln('Decoder matrix for the active channels listed above
5 8 3T_" is:,')..

* . 584
585 writeln:

. 1! 586 for row : 1 to received do begin
12 587 for col := I to transmitted do
12 588 WRITEOCTAL (decoder [row][col], fieldbase)
-2 589 writeln
11 590 end;
ii 591 writeln;

592

594 { DECODING BEGINS HERE.
595

11 596 EOT := FALSE;
11 597 while (not EOT) do begin

598
12 599 writeln('please enter, on one line and separated by blanks,

12 600 wri tel n 'the data recei ved on each of the cr, aneIs act. et

- 12 601 writeln('the receivers node. The data should be in the --crt'
t /Z0 1 4
-2 602 writeln('of octal numbers, and should be entered in ordjer cf

.,!2 602
.12 603 writeln('increasing channel number. ');

604
12 605 for index 1 to transmitted do

TIJF

'" ~ 118

Page 17
95-27 -84
17: 45: 04

CC Line# Source Line IB "M Personal CoMputer PE.c-1 Compiler '.. ,:[
12 606 codeword [index] := 0,

6.)7
I 608 for index := 1 to received do

1- 609 READOCTAL (codeword C active channel [index] I);
610

1 611 writeln;
612 writeln('the ,received:2,' transmitted cleartext words were

612)"
12 613 writeln('°(octal numbers expressed in channel order): ')-

12 14 ri tein

615
616 for index := 1 to received do begin

t 617 ,learword := 0;

17, 618 for col := 1 to transmitted do
61? clearword ADD (clearword,

62C MULTIPLY (decoderLirdex.][col 3
621 codeword [col],
62? 2 modulus, field base).

WRITE-OCTAL (clearword, fieldbase)

12 624 end;
S 625 writeln;
626
627 writeln('do you want to decode another ',received:2,' words?

L 622 writeln('(type y or n). ');
.':.',629

"2 -.0 readln(continue);
312 31 if (continue 'n') then EOT : TRUE

12 6 end
634

575 end.

, iymtab 05J Offset Length Variable
7.*j 0 12592 Return offset, Frame length

2052 2046 DNF :Array- Static
,. '58 2 ,?n, • T.-t .

1259o 1 EOT :Boolean Static

, -, " , - .-. : 'i r r a ",
6156 2 ROW :Integer Stet ic
6160 2 ROWS : Integer Static
8:360 2046 DATA :Array* Static
6172 2 TEMP :Integer Static

2 2 INDEX :Integer Static
12598 1 ACTIVE :Boolean Static
6162 2 DATAROW :Integer Static

iF

119

Page 18
05-2=-84
17: 45: 13

] Line# Source Line IBM Personal COmputer Pascal Campiler VI .00
6168 COLUMNS :Integer Static
6174 2 CHANNEL :Integer Static
6248 2048 DECODER :Array Static
6154 2 MODULUS :Integer Static
6164 DATAROWS :Integer Static
12520 64 CODEWORD :Array Static
12586 1 CONTINUE :Char Static
4100 204 DNF_FRIME :Array Static
6146 RECEIVED Integer Static
6170 2 DIMENSION :Integer Static
12584 2 CLEARWORD :Integer Static
6152 2 FIELDBASE :Integer Static

10406 2046 DESIDERATA :Array Static
6150 2 TRANSMITTED :Integer Static
6166 2 EXTRADESID :Integer Static
6180 2 REDUCEDELT :Integer Stat c
6176 2 DESIREDCHANNELS :Integer Static
6178 2 REDUCINGELT :Integer Static

6164 64 DEADCHANNEL :Array Static
6182 2 DEAD CHANNELS :Integer Static
8296 64 DESIRED CHANNEL :Array Static

12456 64 ACTIVECHANNEL .Array Static

Errors Warns In Pass One
0 o

-,

,- -

hw lL A-4! 2 ,

